Funktionaler
Systementwurf

A

DSAG RECOMMENDATIONS | V°b
BEST PRACTICE GUIDELINES FOR DEVEL P MENT™=
USEFUL TIPS FOR ABAP DEVELOPMENT

Deutschsprachige
SARS Anwendergruppe

BEST PRACTICE GUIDELINES FOR DEVELOPMENT
USEFUL TIPS FOR ABAP DEVELOPMENT

Version:
2.0

Updated:
September 2016, translated February 2018

Authors:
Dr. Christian Drumm, Head of Application Development & Consulting,
FACTUR Billing Solutions GmbH

Martin Fischer, Portfolio Unit Manager SAP Database & Technology, BridginglT GmbH

Judith Forner, Senior Consultant Finance & Controlling,
Mundipharma Deutschland GmbH & Co. KG

Edo von Glan, SAP Developer, Dragerwerk AG & Co. KGaA

Florian Henninger, Senior Consultant SAP Development, FIS GmbH
Martin Hoffmann, Head of Software Engineering, Miele & Cie. KG
Valentin Huber, Senior IT Consultant, msg systems ag

Jens Knappik, SAP System Architect, thyssenkrupp Materials Services GmbH

Dr. Christian Lechner, Principal IT Consultant, msg systems ag

Steffen Pietsch, Head of Backoffice, Haufe-Lexware GmbH & Co.KG
Daniel Rothmund, IT Business Analyst SAP, Geberit Verwaltungs GmbH
Holger Schéfer, Business Unit Manager, UNIORG Solutions GmbH

Denny Schreber, Senior Solution Architect, cbs Corporate Business Solutions
Unternehmensberatung GmbH

Andreas Wiegenstein, CEO, SERPENTEQ GmbH

Barbel Winkler, System Analyst SAP Basis/Programming,
Alfred Karcher GmbH & Co. KG

Further information on the authors can be found in Section 11 ‘The Authors’.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

THANKYOU TO ALL THE PARTICIPANTS

Special thanks go to those SAP employees who actively supported compilation of
the 2nd edition of the guide with their reviews, discussions and constructive ideas.
In particular we would like to thank Jirgen Adolf, Carine Tchoutouo Djomo, Olga
Dolinskaja, Thomas Fiedler, André Fischer, Dr. Thomas Gauweiler, Oliver Graeff,
Michael Gutfleisch, Martin Huvar, Karl Kessler, Michael Schneider, Harald Stevens,
Christoph Stéck, Dr. Wolfgang Weiss, Wolfgang Wohrle and Margot Wollny.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

CONTENTS

1 INTRODUCTION

1.1 MOTIVATION & YOUR COOPERATION
1.2 POSITIONING
1.3 AMENDMENTS IN THE 2ND EDITION

2 PROGRAMMING GUIDELINES

2.1 NAMING CONVENTIONS

2.2 NAMESPACE

2.3 READABILITY AND MODULARISATION

2.4 SEPARATION OF PRESENTATION AND APPLICATION LOGIC
2.5 INTERNATIONALISATION

2.6 DYNAMIC PROGRAMMING AND AUDITABILITY

2.7 NEW LANGUAGE ELEMENTS

2.8 OBSOLETE STATEMENTS

2.9 AUTOMATIC CHECKING OF DEVELOPMENT OBJECTS

2.10 HARD CODING, MAGIC NUMBERS

2.11 AUTHORISATION CHECKS IN SOURCE CODE

2.12 PROGRAMMING MODEL: OBJECT-ORIENTED VS. PROCEDURAL
2.13 DEVELOPMENT LANGUAGE

3 PERFORMANCE

3.1 THE PRINCIPLE OF AVOIDANCE
3.2 PERFORMANCE OPTIMISATION ONLY IN THE APPROPRIATE AREAS

3.3 USE EXISTING TOOLS
3.4.1 Data model
3.4.2 Database access
3.4.3 ABAP Core Data Service (CDS) Views

10
11
1
17
18
19
20
22
22
23
24
24
25

25

25
25

26
27
27
29

3.5

3.6

INTERNAL TABLES AND REFERENCES
3.5.1 Field symbols
3.5.2 Passing parameters

CODE PUSH DOWN

ROBUSTNESS AND ACCURACY

4.1

4.2

4.3

ERROR HANDLING

4.1.1 SY(ST)-SUBRC checks

4.1.2 MESSAGE statement

4.1.3 Class-based exceptions

4.1.4 Exceptions that cannot be handled

CORRECT IMPLEMENTATION OF DATABASE CHANGES
4.2.1 Lock objects

4.2.2 Database access frameworks

4.2.3 Update concept

LOGGING

ABAP SECURITY AND COMPLIANCE

5.1

5.2

5.3
5.4

SECURITY ISSUES RELEVANT TO TESTING IN SAP STANDARD
5.1.1 Authorisation checks

5.1.2 Auditability

5.1.3 Data privacy

5.1.4 Injection vulnerabilities

5.1.5 Standard protection

SECURITY RECOMMENDATIONS
5.2.1 Seven universal rules for secure ABAP programming
5.2.2 The most critical and frequent risks in ABAP

ABAP COMPLIANCE PROBLEMS
TESTING TOOLS

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

30
31
31

32

33

33
33
34
34
36

36
36
37
37

37

38

38
39
39
39
40
40

40
41
42

42
43

6 DOCUMENTATION L 8.1.4 Transport system 56

8.1.5 Safeguarding consistency of new developments and extensions 57

6.1 DOCUMENTATION INDEPENDENT OF DEVELOPMENT OBJECTS L 8.1.6 Roll back of new developments 57
6.2 DOCUMENTATION OF DEVELOPMENT OBJECTS 45 8.2 CHANGE MANAGEMENT 58
6.3 DOCUMENTATION IN THE SOURCE CODE 46 8.3 SOFTWARE MAINTAINABILITY 60

6.3.1 Documentation language 46
6.3.2 Change documentation 46 8.4 ADAPTATION OF SAP FUNCTIONALITY 60
6.3.3 Program header 46 8.5 AUDITABILITY OF APPLICATIONS 63
6.3.4 Source code comments 47 8.5.1 Test process basics for the creation of software products 63
8.5.2 Test automation 65

7 FEASIBILITY AND ENFORCEABILITY 47
9 ECLIPSE DEVELOPMENT ENVIRONMENT 67

7.1 FEASIBILITY 47
7.1.1 Motivation for a process 47 9.1 REQUIREMENTS AND INSTALLATION 67
7.1.2 Process design and maintenance 48 92 NECESSITY &7

7.2 ENFORCEABILITY 49
721 Manual testing 49 9.3 ADVANTAGES 67
7.2.2 Automatic testing 50 9.4 CONSIDERATIONS 68
7.3 PRACTICAL EXPERIENCE AND TIPS 51 9.5 PROBLEMS AND SUPPORT WITH CHANGEOVER 68

7.3.1 Source code quality assurance 51
7.3.2 Time and budget quality assurance (QA) 51 9.6 CONCLUSION 69
7.3.3 Problems 52 9.7 ADDITIONAL SOURCES 69

7.3.4 Decision making regarding modifications 52
7.3.5 Practical field report: Comgroup GmbH 53 10 USER INTERFACE (Ul) 70
8 INFRASTRUCTURE AND LIFECYCLE MANAGEMENT 54 10.1 UI TECHNOLOGIES IN PRACTICE 70
8.1 INFRASTRUCTURE 54 0 A
8.1.1 Classic three-system landscape 5S4 10'2'2 Dequllrements 77
8.1.1.1 Development 54 o 163\;e201pr51§nt 73

8.1.1.2 Quality assurance 54 oL Iscover

8.1.1.3 Production 54 10.2.2.2 Design 73
8.1.2 Five- and six-system landscape 54 10.2.2.3 Deliver) 74
8.1.2.1 Development 54 10.2.3 Gengralrecommendatlons 76
8122 Test 55 10.2.4 Additional sources 77
8.1.2.3 Quality assurance 55 10.3 SAP GATEWAY 77
8.1.2.4 Maintenance 55 10.3.1 Using SAP Gateway 77
8.1.2.5 Consolidation 55 10.3.2 Developing with SAP Gateway 78
8.1.2.6 Production 55 10.3.3 General recommendations 80
8.1.2.7 Schematic illustration of six-system landscape 55 10.3.4 Additional sources 80

8.1.3 Sandbox 56

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -5-

11 THE AUTHORS

APPENDIX A: NAMING CONVENTIONS

Al

A.2

A3
A4

A5
A6

REPOSITORY OBJECT NAMING CONVENTIONS
A1l Package hierarchy

A.1.2 Dictionary objects

A.1.3 Containers for source code objects

NAMING CONVENTIONS FOR ABAP SOURCE CODE

A.2.1 Classic user dialogues [selection screens/dynpros)
A.2.2 Visibility

A.2.3 Signatures

FURTHER INFORMATION ON NAMING CONVENTIONS

MISCELLANEOUS/LESSONS LEARNED
A.41 Customer namespaces
A.4.2 Avoid superfluous identifier information

FORMS
PROTECTION OF NAMING CONVENTIONS IN ABAP WORKBENCH

APPENDIX B: FURTHER EXAMPLES

B.1

ADDITIONAL ABAP KEYWORD DOCUMENTATION

LEGAL NOTICE

81

83

84
85
85
86

88
88
88
88

89

89
89
89

90
90

91

91

92

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

LIST OF FIGURES

Figure 1: ICS risks resulting from insecure ABAP source code
Figure 2: Schematic illustration of six-system landscape
Figure 3: Change control form (CC)

Figure4: W-model with test levels

Figure 5: SAP NetWeaver 7.5 PAM browser support

Figure 6: Phases of design thinking

Figure 7: Supported test phases in SAPUIS

Figure 8: SAP Gateway deployment options

42
55
58
64
71
72
75
78

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

=z
o
-
(8}
2
(=]
o
o
-
=z
==

1 INTRODUCTION

As standard software SAP is highly flexible and extensible. Almost every company that
uses SAP software customizes the software, adds custom code or different kind of
extensions. SAP software is consequently subject to a continuous process of modifica-
tion and upgrading by both the manufacturer and the customer as a result of varying
customer requirements.

This high level of flexibility and extensibility of SAP software has advantages and
disadvantages. The software can be optimally adapted to meet customer-specific
requirements and significantly increase value added as a result. At the same time
extensibility exposes the risk of custom developments, which can be complex, difficult
to maintain and prone to failure.

2012 saw the first edition of the DSAG Best Practice Guidelines published with the aim
of providing practical tips for and impulses on the maintainable and efficient design of
custom developments. The following years saw the guidelines translated into English.
We received major readership feedback from the first version; not to mention the fact
that much has changed in SAP development in recent years and a lot of innovations
have been introduced. As a consequence, we now present you with the second, totally
reworked and updated edition of the DSAG Best Practice Guidelines. The German
version 2.0 was originally published at the DSAG Annual Conference in 2016. The
English translation we present in February 2018. Hereby, we did not consider any
updates but translated the content as of 2016.

1.1 MOTIVATION & YOUR COOPERATION

The work of the German-Speaking SAP User Group [DSAG]) is based on three pillars -
broadening the knowledge base, exerting influence and networking. The following
document was drawn up by the DSAG working group SAP NetWeaver Development and
addresses the first pillar, broadening the knowledge base for users and partners.

As the authors, our aim is to provide the implicit knowledge of development that is
evident throughout companies to other DSAG members in the form of a compact
document. Our goal is to see the document actively applied and the wealth of experi-
ence it encompasses continuously improved upon.

For this very reason we have established a community website that provides further
information on the guide, author and other DSAG member contact information and also
enables you to share your outlook with others:

www.dsag.de/leitfaden-abap

[

We look forward to your feedback!

1.2 POSITIONING

SAP and a whole range of specialist journals have produced excellent publications on
application development, enhancing and upgrading the SAP platform. Throughout this
guide we will be referring to what we regard as literature worth reading.

The added value of this document lies in the consolidation of established procedures,
practical tips and well-proven rules applied in user companies. These guidelines
provide users, developers and project, IT and development managers with recommen-
dations and support so they can avoid re-inventing the wheel” and instead build on the
experiences of others. In the same breath, recommendations in this guide should not
be interpreted as a set of hard and fast rules, but more as a selection of practical tips.

In our capacity as the authors, we have endeavoured to find the right balance between
general knowledge and in-depth detail. As a consequence, we provide references to
additional sources at relevant points to avoid unnecessarily reiterating topics that have
already been thoroughly debated.

1.3 AMENDMENTS IN THE 2ND EDITION

The second edition of this document is structurally based on the first edition from 2012.
Each section has been fundamentally checked for content and revised. As a result of
DSAG member feedback, some recommendations from the first edition were updated,
while others were comprehensively expanded on by the authors. The sections ‘Develop-
ment Environment’ and ‘User Interface’ have also been newly added.

Even if you are well-acquainted with the first edition, we thoroughly recommend that
you read and apply the recommendations in this comprehensively revised second edition.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

http://www.dsag.de/leitfaden-abap

n
w
=
-
w
=
=)
o)
©
=
=
=
<<
o
0]
o
x
o
o~

2 PROGRAMMING GUIDELINES

This section defines firmly established and recommended programming guidelines for
applications created using ABAP. It tells you how to achieve readable, maintainable,
high-quality ABAP source code using standard SAP tools and discipline. This makes
source code maintenance more straightforward and enables different internal and
external individuals to work together efficiently on the (further) development and
maintenance of programs.

Using official ABAP programming guidelines

Since the release of NetWeaver 7.31 SP5, official SAP ABAP programming guidelines
have become a fixed component of ABAP keyword documentation. Developers can
access these via the local system installation (transaction ABAPDOCU/F1 Help in
ABAP Editor/ADT]) or via the SAP Help Portal'. In addition to its comprehensive,
high-quality content, the document has a further advantage over other development
guidelines: instead of gathering dust in someone’s desk drawer, it can be directly
integrated into the development environment. Instructions for carrying out SAP Easy
Access menu integration are available under SAP Note 13870862 or for SE80 integra-
tion in the linked SAP Community Network (SCN]J blog.?

SAP ABAP programming guidelines offer

° Extremely well-founded, practical recommendations

° Detailed information on each rule, including examples

o Availability in German and English

o Ongoing further development by SAP

° Interactive navigation to keyword documentation, release-dependent changes,
performance and security themes, sample programs and transactions

o Use of all available ABAPDOCU functions (export as HTML or PDF, search, etc.)
o Well-known guidelines which have more or less established as a standard

o Can be extended by customer

1 Cf. SAP Help Portal 'ABAP keyword documentation - NW7.50"
2 Cf. SAP Note 1387086 - HTML Viewer Controlin SAP Easy Access screen
3 Cf. SCN Article ‘Enhancing the ABAP Workbench with a website containing dev quidelines!”

Extension of ABAP programming guidelines

Extension the ABAP programming guidelines makes sense primarily if you are
looking to incorporate areas not currently covered by the standard rules. These include
object composition design principles (SOLID*/GRASP?) and architectural concepts such
as SAP package concepts or the use of frameworks. Also conceivable is an additional
listing of rules that are regarded as pivotal to your company. Refer to the appendix
(Section B.1) for further details on how to expand ABAP keyword documentation.

Make your development guidelines available within
the the development environment to facilitate quick
access.

Use numerous transparent and verifiable examples
within the development guidelines that can be re-used
as code snippets.

Use the official SAP ABAP programming guidelines as
a benchmark. This extremely comprehensive docu-
ment offers detailed recommendations for a broad
range of activities.

4 Cf. https://en.wikipedia.org/wiki/SOLID [object-oriented design)
5 Cf. https://en.wikipedia.org/wiki/GRASP_[object-oriented design)

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

http://help.sap.com/abapdocu_750/de/index.htm
https://launchpad.support.sap.com/#/notes/1387086
http://scn.sap.com/community/abap/custom-code-management/blog/2014/05/15/enhancing-the-abap-workbench-with-a-website-containing-dev-guidelines
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://en.wikipedia.org/wiki/GRASP_(object-oriented_design)

2. PROGRAMMING GUIDELINES

If necessary consolidate the SAP document into a
summarised version. Due to its scope and depth of
detail, a comprehensive look at the official ABAP
programming guidelines would be relatively time-
consuming and partially encompass topics that are
irrelevant for day-to-day development activity. If this
document is to be used in your organisation, we
recommend the assignment of a team to summarise
the document and provide training on use of the
document within your organisation. Especially in large

organisations, it may be prudent to bring stakeholders
from quality assurance and development into the
team and possibly adapt certain points to meet the
specific requirements of the organisation.

If the document becomes an element of external
service contracts, the external developer acceptance
process should be incorporated into developer key
activation and reference made to the document in the
course of acceptance dialogue.

2.1 NAMING CONVENTIONS

Naming conventions specify uniform, binding guidelines for naming software objects
(e.g. classes, function modules) and naming objects in the source code (e.g. variables).

We strongly recommend stipulating a naming convention as a guideline for any
developments within the SAP system. The aim of using a standardised naming conven-
tion is to significantly enhance the maintainability of customer-specific modifications
and upgrades. This consequently means lower maintenance requirements and costs as
well as faster troubleshooting in the event of an error.

The explicitly formulated naming conventions should be a component of internal
training to familiarise new employees with the basic rules and the specifics of the
company. In addition, making the naming convention the subject of contracts with
external developers and partner companies is also an established procedure. Auto-
mated checks ensure subsequent compliance with the convention (cf. Section 2.9 and

Appendix A).

| B

Appendix A contains an example of a naming convention.

L]

ADDITIONAL SOURCES:

1. Development Guidelines for Greenfield Implementation in sync with SAP Custom
Code Management?

6 Cf. SCN article http://scn.sap.com/docs/DOC-56285

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -10-

http://scn.sap.com/docs/DOC-56285

n
w
=
-
w
=
=)
o)
©
=
=
=
<<
o
0]
o
x
o
o~

2.2 NAMESPACE

The separation of customer objects and SAP objects can be facilitated using the
prefixes Y and Z and also via a customer-specific namespace. The syntax is as follows:

Z..
Y...
/<customer-specific namespace>/...

An existing SAP customer can register a customer-specific namespace with SAP free
of charge. Following confirmation, that namespace is exclusively registered worldwide
for use by the respective company. This procedure reinforces conflict-free assignment
of names for software objects.

The advantage of a customer-specific namespace is that there are no conflicts when
importing external objects into the company SAP system [(e.g. when using external
applications that are imported by a transport request) and when combining SAP
systems within the scope of a post-merger integration. With the reservation of the
namespace, a software object with the same prefix cannot be created on any external
system, i.e. a system that is not registered to the namespace in question.

One disadvantage of using the customer-specific namespace is that through consistent
use of the prefix, object naming will inevitably 'use up’ numerous characters. This can
make assigning a name difficult, especially for objects that only have a few characters
available for naming. Moreover, not all object types support the use of namespaces,
e.g. authorisation objects. The same applies to some SAP tools und frameworks:
although their use makes sense and is advisable, such utilisation can be problematic
as the use of namespaces in partner and customer development can be inconsistent
and even non-existent. We therefore recommend checking this situation prior to any
utilisation of new tools or frameworks.

| B

We recommend using a customer-specific namespace.

L]

ADDITIONAL SOURCES

1. http://help.sap.com (Creating namespaces)
2. Note 105132 - Reserving namespaces
3. Note 84282 - Developing namespaces for customers and partners

4. SAP Support Portal: http://support.sap.com/namespaces

2.3 READABILITY AND MODULARISATION

Creating a clearly readable source code that is easy to understand is not simple and
requires discipline and professionalism. Yet the effort invested is certainly worth it in
the long-term, above all in the case of durable applications involving continuous
maintenance and upgrading tasks. But what defines readable, easily comprehensible
source code? If we look beyond ABAP?, then it is all about the simplicity of the source
code. In order to achieve this, we suggest the following approach:

o Use natural language (‘meaningful’ naming of variables, procedures etc. to
reveal your intention)”

o Consistent use of Domain-specific vocabulary

. Avoidance of abstract, unclear terms and abbreviations

7 Pertinent authors/books on this topic:
e Robert C. Martin: Clean Code: A Handbook of Agile Software Craftmanship. Prentice Hall, 2008
e Steve McConnell: Code Complete, 2nd Edition. Microsoft Press 2004
e Martin Fowler: Refactoring - Improving the Design of existing Code. Addison-Wesley, 1999

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

’]‘l

http://help.sap.com/
https://launchpad.support.sap.com/%23/notes/105132
https://launchpad.support.sap.com/%23/notes/84282
http://support.sap.com/namespaces

n
w
=
-
w
=
=)
o)
©
=
=
=
<<
o
0]
o
x
o
o~

Uniform source code structure (indentation, writing style)

Foregoing individual programming styles in favour of a common standard
Modularisation

No overly-long/complex procedures

Avoidance of global variables

What are the specific characteristics of the ABAP environment?

Avoiding abstract terminology is sometimes difficult. Older developments (classic
SAP modules] in particular contain numerous German abbreviations and identifiers
that make it harder to come up to speed for international project teams or junior
developers with little SAP background knowledge.

The development environment can sometimes significantly limit the use of
natural language for naming repository objects and other identifiers. Further-
more, in contrast to other programming languages, ABAP uses a global as
opposed to a package-based namespace. In combination with prefix namespaces
(/*/), such conditions promote the use of abbreviations that are difficult to read
and may be detrimental to developer productivity.

These specific characteristics aside, the above principles can be positively implemented.

Consider the aforestated procedures during developer
selection and training, project scheduling (time
pressure during initial development can result in
source code that is difficult to maintain with conse-
quently higher follow-up costs) and the planning of
quality measures (automatic and manual inspections).

Use uniform, natural language with consistent termi-
nology for source code, within documents and during
discourse with colleagues and customers. Use the
SAP terminology database as a guide (transaction
SAPTERM or http://www.sapterm.com/).

Define standards for the consistent handling of

identifiers, taking into account the extent of integra-
tion with SAP standard software (customer/product
supplier), quantity of customer source code and the
structural and procedural organisation of your SAP
development department (generalists/specialists in

B

national/international teams). Depending on the
constellation of the aforestated aspects, the naming
conventions (e.g. variable identifier sales_organisa-

Refactoring tools from the ABAP Development Tools (ADT) for Eclipse (cf. Section 9)
can be extremely helpfulin this respect. For example, utilisation of ADT enables the
renaming of individual variables or entire classes for all occurrences in one go. This

minimises the effort required for correcting an unsuitably selected identifier and also
reduces the risk of error.

tion instead of vkorg® or index instead of i) can facili-
tate a lot maintenance and further development
activities. The following table serves to support any
necessary decision making.

8 The five-character field identifier in the classic modules is a special case. When used in structures, conversion
to descriptive identifiers can mean a greater workload (and error risk] for mapping in both directions.
As such it may be prudent to retain them (despite the poor legibility).

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

12

n
w
=
-
w
=
=)
o)
©
=
=
=
<<
o
0]
o
x
o
o~

Small/ | Large/

Identical | Multi- Module Lots of Little Add-on
cen- decen-

native lingual | special- custom | custom | devel-
language | team ists code code opment

tralised | tralised
team team

e e Strongimpairment of maintenance/further development through problematic
readability/ identifier selection

J Little impairment of maintenance/further development through problematic
readability/ identifier selection

Code formatting

Clear and readable source code helps any developer to (re-)familiarise with the code.
The easiest and fastest way to make and retain readable source code is to use the
Pretty Printer / Formatter in the ABAP development environment or ABAP Development
Tools. At the push/click of a button/shortcut, the selected source code is formatted in a
standard form and the tool offers various configuration options. These can be found in
the workbench settings within the classic SAP GUI workbench, while in ABAP Develop-
ment Tools, the settings need to be made in the project-specific formatting properties.
We recommend to use source code indentation, with keywords in higher case and
identifiers in lower case. This enables the source code to be easily understood even in
printed form and without syntax colouring. Pretty Printer / Formatter is a straightfor-
ward way to create a standardised source code layout. We recommend deactivating the
option ‘Insert standard comments’, as the generated comments are not automatically
updated following later changes and include redundant information.

B

We recommend using Pretty Printer / Formatter and
defining the settings as a uniform standard. In addition to
the settings in Pretty Printer, we also recommend using
functional syntax for method calls and not to use the CALL
methode statement.

|

Software structuring with the SAP package concept

With the roll out of SAP NetWeaver Application Server 6.20, the development class
concept was completely replaced by the SAP package concept and also expanded by
numerous features to improve software structuring. In addition to high-level structur-
ing of the software, the primary tasks of the package concept are to embed related
objects in a common framework, regulate access to objects and control dependencies
to other packages. Explaining the details of the package concept goes beyond the
scope of these guidelines, which is why we provide reference to existing SAP Help
documentation? and the extremely comprehensive SCN article series.’” Generally
speaking, package structures can be formed on the basis of functional, technical and
organisational criteria, whereby the following lists the most common criteria:

o Dependency on software components

o Assignment to SAP standard application hierarchy

J Reusability of development objects

o Grouping of individual applications

o Stability of development objects

. Layer-specific/technical affiliation

o Organisational assignment of incorporated objects

o Translation relevance of development objects

9 Cf. https://help.sap.com/viewer/search?q=package %20builder&language=en-US&state=PRODUCTION&format=

standard,html,pdf,others
10 Cf. SCN article Tobias Trapp ABAP Package Concept - Part 1 -4"

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

https://help.sap.com/viewer/search?q=package%20builder&language=en-US&state=PRODUCTION&format=standard,html,pdf,others
https://help.sap.com/viewer/search?q=package%20builder&language=en-US&state=PRODUCTION&format=standard,html,pdf,others
https://blogs.sap.com/2011/12/04/abap-package-concept-part-1-the-basics/

2. PROGRAMMING GUIDELINES

Use structure packages to highlight the dependency
of various software components, meaningfully group
your own comprehensive developments or when
planning to use the package check.

Within the scope of development, check if a main
package for the commensurate top-level application
components (SE81) already exists in the customer
namespace and create one if not.

Allocate packages to application components that are
semantically most suitable.

Use package hierarchies to organise your software
system. Each software system should have at least
one main package that consolidates its sub-systems
and essentially defines its purpose.

Use development packages to centrally bundle seman-
tically and technically coherent repository objects.

Avoid reciprocal dependencies between two or more
packages. Transfer dependent components to separate
packages so that only unilateral dependency exists.

Arrange packages with unilateral dependency as far
up the software system package hierarchy as possible.
If functions are needed by multiple software systems,
create a general foundation or basis package.

Group repository objects using a package-specific
namespace prefix. Use the application hierarchy or

a product abbreviation in this respect (example: all
objects in the package hierarchy for the main package
Z_SALES_SUPPORT are given the prefix SAS: class
ZCL_SAS FIELD _WORKER, master data table
ZSASFIELDWORKERS, etc.).

|

Package interface and package use access

Package access on all package levels is defined via the package interface and use
access. Whereas the package interface serves to disclose reusable package compo-
nents, use access helps to control access to components. If a developer does not pay
attention to the package interface, and uses standard SAP components that are not
released through the package interface, this can impact considerably on the customer
as a result of necessary subsequent upgrading. The possible results of using unautho-
rised components are described by way of example in the SCN blog."

Access to components of other packages can be optionally controlled via the package
check concept. Further details on activating the package check are covered by SAP
Note 648898'2. SPAK_API package tools can be used and package access controlled
following activation.

11 Cf http://scn.sap.com/community/abap/blog/2013/01/28/is-sap-nw-ehp-3-really-non-disruptive
12 Cf https://launchpad.support.sap.com/#/notes/648898

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

http://scn.sap.com/community/abap/blog/2013/01/28/is-sap-nw-ehp-3-really-non-disruptive
https://launchpad.support.sap.com/%23/notes/648898

Package namespaces

In addition to the generally known customer namespaces Y*, Z* and /namespace/, via
the package concept SAP also offers the namespaces $* and T*. Every developer is no
doubt familiar with $TMP; but did you know that you can also use those two namespaces
for packages with local objects in your own package hierarchies? The difference
between the namespaces is that $* cannot be transported and the developer has to
carry out versioning manually. By contrast, T* package contents can be manually
transported to all systems that are not designated production systems by way of a
transport of copies. From a software structuring perspective this gives rise to the
following benefits:

Prior to reusing a repository object from a different
package, first check if the object has been released in
a package interface. Only objects released via a
package interface can guarantee long-term stability.
In SAP standard, using such objects reduces the risk e ltis easier to distinguish unfinished or prototypical components from productively
of changes caused by a release change. used components.

2. PROGRAMMING GUIDELINES

P_rOVIde access FO package objects fthrough the defini- J Production systems are not overloaded with unnecessary and potentially security-
tion of package interfaces. Only stringent package critical functions.

interface compliance can ensure that the defined
package structure is maintained and no disruptive e Maintenance and further development costs can be reduced because necessary
access to package objects occurs. changes only have to be carried out on productively used packages.

If necessary provide more package interfaces and
group the interfaces on the basis of semantic infor-
mation, for instance data manipulation or reporting
tools, or according to utilisation criteria.

B

If required, move your package interfaces further up
the package hierarchy where you have the possibility
of further limiting access or enabling access to
released elements from outside the system.

Use a suitable namespace for structuring your packages.
Take into consideration the relevance of transporting
and the purpose of the development (local test devel-
opment/test development with deviating transport

Limit the use of critical functions by providing sepa- o
destination).

rate package interfaces for these objects. Interface
usage rights can be determined through defining
restriction on user packages.

Ensure that local developments do not enter the
production system.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -15-

n
w
=
-
w
=
=)
o)
©
=
=
=
<<
o
0]
o
x
o
o~

Using the package concept

Comprehensive utilisation of all the features of the package concept will not equally
suit every company and if designed incorrectly can lead to unwarranted additional
costs. We have created the following table to help you in the decision making process.
The valuation criteria are based on the value range (+) = less important to (+++)

=very important.

Small Large/

Regional

. Transla- | A lot of Little Add-on-
cen- decen- special .
.) tion custom custom develop-
tralised tralised develop- -
activities | code code ment
team teams ment
General
package ++ +++ ++ +++ +++ ++ ++
concept
Package
. ++ +++ +++ + +++ + +++
interfaces
Structure
+ ++ + ++ ++ + +++
packages
Package
. + ++ ++ + +++ + +4++
testing

Modularisation

Programs in which the logic units of work are overly long and not separated are
consequently harder to read and therefore difficult to maintain and extend.

A modularisation unit (form routine, method or function module] consolidates logically
cohesive statements that perform a clearly defined task. However, ensure that you do
not end up with a lot of very small individual units that perform only trivial functions.
Avoid modularisation units with only a few statements unless these improve readability
of the source code and as such are part of the source code documentation.

Modularisation serves to clearly arrange the source code, despite the complexity of the
task in hand. See also Section 2.12 ‘Programming model: object-oriented vs. procedural’.

ABAP Development Tools (see Section 9) provide comprehensive refactoring options,
for example automatic method extraction, which facilitates subsequent modularisation
of the source code (naturally there are limits, which means some manual editing may
be required).

Avoiding global variables

In addition to structuring the program text, modularisation also involves restricting the
visibility of variables.

Global variables destroy program modularisation. They make readability and maintain-
ability considerably more difficult. Debugging and extension of code that uses mainly
global variables is often only possible on a ‘trial and error’ basis.

-

Avoid all global variables.

Limitations of the rule

In smaller programs with only a few simple modularisation units, global variables are
usually harmless (due to its small size, the program is normally fairly transparent and
‘hidden’ or less obvious side effects due to changes in global variables are unlikely).
Unfortunately, global variables cannot always be avoided. In particular, they are still
required for the elements of classic screens and selection parameters.

Further exceptions are the printing programs using the SAPscript technology, which
explicitly works using global variables. For readability reasons, always work with
returning parameters in this case, which are then correspondingly made available in
global variables.

Avoiding code copies

Duplicate or multiple source code (clones) makes debugging and function modification
or extension more difficult because all the copies have to be found and adapted
accordingly. Moreover, because the copies are usually no longer totally identical,
ascertaining whether differences exist and where these differences are takes a great
deal of time and effort.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

n
w
=
-
w
=
=)
o)
©
=
=
=
<<
o
0]
o
x
o
o~

Copying SAP standard code is a special case. See Section 8.4 ‘Adaptation of SAP
functionality’.

| B

Adhere to the DRY principle: ‘Don’t repeat yourself™® and
split off the repeated source code section and transfer it to
a separate method.

|

Remarks

A more generous formulation of the DRY principle is the Rule of Three', which allows
for a second copy.

When searching for copies of code', generated source code should be excluded as this
constitutes a deliberate copy.

Multiple statements in one line, method chaining

To increase source code readability, we recommend avoiding multiple statements on
one line.

One exception to this is so-called method chaining. Chaining method calls avoids
variables introduced merely to hold intermediate results, thus creating a more

readable source code. However, extensive method chaining, particularly in combination

with less descriptive method names, can reduce readability. As such there is no
all-encompassing guideline.

13 Cf https://en.wikipedia.org/wiki/Don%27t repeat yourself
14 Cf http://en.wikipedia.org/wiki/Rule of three [programming)
15 For example with SAP Clone Finder, CCAPPS transaction code

2.4 SEPARATION OF PRESENTATION AND APPLICATION LOGIC

A separation of presentation and application logic should be carried out in all programs.
This enables application logic results and functions to be displayed to the user via a
variety of user interfaces (Uls] and also to provide these to other systems via a stan-
dardised interface. This rule applies to all standard Ul technologies, but the degree of
support to such logic separation can vary. Implementation in Floorplan Manager/Web
Dynpro for ABAP already allows for separation of the model and Ul logic within the
framework. Separation is not facilitated in the same way in the case of classic Dynpros
and BSPs, but separation can and must also be carried out within these environments.
However, no technical checks are available in this case, unlike with Floorplan-Manager/
Web Screens, where commensurate checks are undertaken in Code Inspector. The
same principles naturally also apply for UI5 development (see Section 10], in which
user interface technologies already support the model-view-controller pattern and the
application logic is provided by the respective backend.'

Plausibility rules are a typical example of explicit separation of the application logic
and Ul. When a plausibility check of input is developed in a specific Ul technology (in
the presentation layer), if the Ul technology is changed, these checks have to be
re-developed. In order to avoid this, the functions for checking input or parameters
should be created and maintained independently of the applied Ul.

Most of the time it also makes sense to keep the source code for the data model and/or
database access separate, be it via a separate local class (for small developments not
targeted for reuse) or a framework such as BOPF (Business Object Processing
Framework'). This complies with the classic model-view-controller pattern.

16 SAP roadmap for user interface strategies
17 http://scn.sap.com/community/abap/bopf

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://en.wikipedia.org/wiki/Rule_of_three_(programming)
https://support.sap.com/content/dam/website/roadmaps/en_us/cross-topics/SAP User Interface Technologies Road Map.pdf
http://scn.sap.com/community/abap/bopf

n
w
=
-
w
=
=)
o)
©
=
=
=
<<
o
0]
o
x
o
o~

2.5 INTERNATIONALISATION

Language-dependent texts in programs should not be 'hard coded’, but stored in text
elements (program text, class text, online text repository [0TR]), standard text or
message classes. As all independent developments should be of a standard that can
be applied worldwide, all the texts should be translated into the commensurately
principal languages.

Configurable language-dependent texts are stored in individual text tables. A text table
possesses the same key attribute as the associated customising table and is referenced
to this via a foreign key relationship. In addition, the first key attribute after the client
field must be the language attribute (data element SPRSL or SPRAS).

We recommend using Code Inspector or ATC to
search for texts that cannot be translated.

To create subsequent translations more easily, the

length of the descriptions and text elements should
be as long as possible. As a rule of thumb, the length
of text elements should be 1.5 times the length of the
native description.

To reduce the outlay for translations, the following aspects should be considered when
establishing a translation strategy:

o Use English as the core source language

o Define the depth of translation work (e.g. only surface text, surface text and F1
Help functions, complete translation) using the translation levels defined by SAP™

o Assign packages to the SAP application hierarchy to enable use of domain-
specific text recommendations for the distribution of top texts

o Label technical text tables that are not relevant to translation

o Use long text objects (e.g. via SO10) instead of dividing text into a number of lines

o Use uniform terminology and spelling supported by the terminology database

e Avoid wildcard characters (&) in message texts [instead use &1 &2 &3 &4,
because the position of such within a message text may differ in the various
languages)

o Work with supplementation language in systems different from the development
system for filling translation gaps in the target language. Use pseudo language

2Q for technical user interface tests.”

o Use the SAP package concept for separating elements that are relevant and
non-relevant to translation

ADDITIONAL SOURCES

1. Presentation ‘Best Translation Practices in SAP Custom Development Projects’
by Lindsay Russel ([SAP SE)

18 Cf. https://websmp102.sap-ag.de/~form/handler? APP=00200682500000002672& EVENT=DISPLAY& SCENAR-
10=01100035870000000122& HIER KEY=501100035870000008578& HIER KEY=601100035870000248115&
19 http://www.seé3.info/pseudo-localization-sap-applications/

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

18

https://www.dsag.de/system/files/node/document/field_doc_file/20141120_development_sap_russel.pdf
https://websmp102.sap-ag.de/~form/handler?_APP=00200682500000002672&_EVENT=DISPLAY&_SCENARIO=01100035870000000122&_HIER_KEY=501100035870000008578&_HIER_KEY=601100035870000248115
https://websmp102.sap-ag.de/~form/handler?_APP=00200682500000002672&_EVENT=DISPLAY&_SCENARIO=01100035870000000122&_HIER_KEY=501100035870000008578&_HIER_KEY=601100035870000248115
http://www.se63.info/pseudo-localization-sap-applications/

n
w
=
-
w
=
=)
o)
©
=
=
=
<<
o
0]
o
x
o
o~

2.6 DYNAMIC PROGRAMMING AND AUDITABILITY
Dynamic programming

In ‘traditional’ static development, the development objects and source code are
defined at design time and statically stored in the SAP system. The specified source
code is then executed during runtime. In contrast, dynamic programming allows greater
source code flexibility. Dynamic programming is illustrated by the following example:

The name of an ABAP class to be invoked is not stored statically in the source code;
instead, an instance of a class whose name is provided during runtime (with the name
stored in a variable, possibly coming from customizing), is created. The name and
consequently the specifically executed implementation may well vary, for example, as a
result of user input.

An advantage of this methodology is increased flexibility, while the disadvantage is
greater complexity. Depending on the type of dynamic programming, security risks
may also be an issue. Tools for automatically recognising security risks do not function
as well with dynamic source code.

Advantages:

o Increased flexibility

o Better reusability

o Avoidance of copies and consequent minimisation of the amount of source code
requiring maintenance

Examples of advantages:
Example 1 - Own user exit setup

The static definition of an abstract class incl. method signature forms the basis for a
‘user exit’. Numerous specific implementations of the abstract class can then be
subsequently created. At runtime, for example, the name of a specific class implemen-
tation is read from a customising table and invoked. Customising can consequently be
used to activate/deactivate a variety of different implementation variants.

Example 2 - Dynamic WHERE clause

At runtime, the WHERE clause for a database operation, e.g. SELECT, is created within
a string variable. This avoids complicated CASE queries, which execute various open
SQL commands depending on the input.

Example 3 - Replacement of so-called boilerplate code?

Dynamic programming can also be used to avoid re-implementing similar logic in
almost identical variants. One example is a database access layer: the tables maybe
different, but the algorithm is always the same. In this case the problem can be solved
using dynamic programming or generating the source code. This takes more work, but
depending on the scenario pays off with less maintenance effort.

Disadvantages:

o When using dynamic calls, the where-used list within the ABAP development
environment is not available. Changing the called code is then a problem.

o When using dynamic programming no syntactic checking is possible during
design time. This can cause an abort in program execution where variable content
is erroneously configured (e.g. erroneous compounding within a dynamic WHERE
clause, wrong class name).

o Dynamic programming brings with it increased security risks if the dynamic
content can be influenced due to unprotected access (e.g. where a WHERE

clause can be influenced by user input; keyword: SQL injection).

o Increased source code complexity.

20 https://en.wikipedia.org/wiki/Boilerplate code

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

https://en.wikipedia.org/wiki/Boilerplate_code

n
w
=
-
w
=
=)
o)
©
=
=
=
<<
o
0]
o
x
o
o~

B

Dynamic programming should be used very conserva-
tively and be well-controlled. Source code with
dynamic content should be checked according to the
dual control principle and documented as it poses a
potential security risk. ?'

When generating source code, a syntax check should
be carried out after generation using the SYNTAX-
CHECK command.

For dynamic or generated source code, class CL_
ABAP_DYN_PRG test mechanisms should be used,
enabling whitelists for dynamic table access to be
applied, for example.

|

Section 5.2 also addresses dynamic programming from a security perspective.
Auditability of ABAP source code

At all times it must be possible to check customer developed or generated ABAP
source code for errors through manual inspection or by using static code analysis
tools. All methods for concealing ABAP source code are impermissible as they impede
such checking and can even be specifically exploited to place backdoors into a system.
Hidden source code (e.g. macros] can no longer be inspected by the debugger, which
makes auditability and error analysis all the more difficult. The techniques for hiding
source code are explicitly not described within this document.

21 Code Inspector/ATC security checks can be used to find dynamic source code (pre-selection for dual control).

B

Never apply methods for concealing source code and
contractually agree this with any external developers.

To avoid problems during maintenance activities
carried out by different developers, we do not recom-
mend to use the editor lock flag to prevent changes
to source code. Instead, source code can be protected
by assigning it to a separate package, for which
access can be restricted using authorisation object
S_DEVELOP with explicit values for field DEVCLASS.

|

2.7 NEW LANGUAGE ELEMENTS

ABAP syntax has been considerably expanded with NetWeaver 7.40 and 7.50.22 New
elements can be roughly divided into two areas:

1. Enablement of the expression orientation that is standard in many other program-
ming languages

This replaces the former statement orientation arising from the ABAP origins as
a macro language. ABAP developers should to be in a position to concentrate on
the ‘what’ in terms of programming rather than the ‘how’ (see the many auxiliary
structures in the legacy source code in the following example).

2. Support of the ‘Code2Data’ paradigm
In other words the transfer of data-intensive operations from the application

server to the database, also called ‘code pushdown’. The associated new language
elements are partly available for all databases (extensions, Open SQL, Core

22 http://scn.sap.com/community/abap/blog/2013/07/22/abap-news-for-release- 740
http://scn.sap.com/community/abap/blog/2015/11/27/abap-language-news-for-release-750

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

20

http://scn.sap.com/community/abap/blog/2013/07/22/abap-news-for-release-740
http://scn.sap.com/community/abap/blog/2015/11/27/abap-language-news-for-release-750

n
w
=
-
w
=
=)
o)
©
=
=
=
<<
o
0]
o
x
o
o~

Data Service CDS views?] and partially only available for SAP HANA (AMDP - ABAP
Managed Database Procedures). When considering the use of HANA-specific
language elements, a balance has to be made between universal operability on
all databases and performance optimisation for SAP HANA.

To illustrate the new potential offered by expression orientation in (1), here is an
example featured in Horst Keller's blog (see below]):

Source code in NetWeaver 7.0
DATA itab TYPE TABLE OF scarr.
SELECT * FROM scarr INTO TABLE itab.

DATA wa LIKE LINE OF itab.

READ TABLE itab WITH KEY carrid = ’LH* INTO wa.

DATA output TYPE string.

CONCATENATE ’Carrier:‘ wa-carrname INTO output SEPARATED BY space.

cl_demo_output=>display(output).

Corresponding source code in 7.40 (SP08)
SELECT * FROM scarr INTO TABLE @DATA(itab).

cl_demo_output=>display(|Carrier: { itab[carrid = ’LH‘]-carrname }|).

23 Still some restrictions in NetWeaver 7.40 [parameterised views only with SAP HANAJ, from NetWeaver 7.50 onwards, the CDS view
functions are database-agnostic

The following language expansions in particular are fundamental:

Introduced in SAP NetWeaver 7.02:

J Inline calculations and inline method calls

e String templates (NW 7.40 example line 2: Parameter of the display method)
o String functions and regular expressions

In SAP NetWeaver 7.40:

. Inline declarations (in line 1: DATA(itab))

o Constructor operators VALUE and NEW

e Table expressions (in line 2: itab[...])

o New parser for Open SQL (in line 1: @ as a character for host variables)

o SQL expressions

B

We recommend learning and using the new language
elements as they can be used to increase the development
efficiency and improve source code readability. The above
list is a good place to start.

|

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

2‘|

n
w
=
-
w
=
=)
o)
©
=
=
=
<<
o
0]
o
x
o
o~

Also to be considered in this connection are team skills and the SAP NetWeaver
release used within the system landscape. Older SAP versions do not always support
the new language constructs or the Code2Data paradigm. If developers are frequently
working on different systems with different SAP NetWeaver releases, then as much
common ground as possible should be found to subsequently avoid even greater
complications during the transfer to legacy systems.

Further information on the new language elements is available in the ABAP Keyword
Documentation and Horst Keller's SCN blogs.??

2.8 OBSOLETE STATEMENTS

SAP has a strict backwards compatibility policy. Nevertheless, be aware that using
obsolete statements such as headers in internal tables will cause problems if the code
is transferred to classes. More up-to-date alternatives are always available for
obsolete language elements. Habit aside, there is little reason to use these elements
and the use of such should consequently be avoided.

We recommend the regular application of a static code
analysis tool to discover obsolete statements. Suitable
SAP built-in solutions include Code Inspector/ATC and
using the extended program check. To minimise the
amount of work required, obsolete statements should al-
ways be replaced when development objects are changed
anyway in the course of other change requests. Usually,
this requires only little additional test effort. In addition,
excellent third-party analysis tools are available.

|

2.9 AUTOMATIC CHECKING OF DEVELOPMENT OBJECTS

SAP provides various tools for automatically checking development objects during
design time:

o Simple syntax checking is carried out automatically upon activation and prevents
the activation of faulty development objects.

o Extended Program Check can be executed for specific, already activated source
code (programs, global classes ... and will report potential problems using three
priority levels.

o Code Inspector provides a comprehensive catalogue of checks, some configu-
rable, from which a check variant can be assembled. This includes Extended
Program Check. Numerous performance and stability tests are also encom-
passed. In addition, internal company checks can also be programmed and
incorporated.

o The latest tool is the ABAP Test Cockpit (ATC)?*, which uses Code Inspector check
variants and also has a number of its own additional functions.

These tools can be used by developers during the development process and are all well
integrated in the ABAP Workbench and ADT (exception: Extended Program Check is
not directly accessible from ADT).

Code Inspector or the ATC can also be globally executed using transaction SE03 to
enable the early recognition and rectification of problems and vulnerabilities during
the release of transport requests. This saves spending unnecessary time and effort on
transports, testing and error handling and improves program performance, stability,
security and maintainability.

In SAP standard, Code Inspector or the ATC are only activated on the release of a
transport request. The recommended process (and the only meaningful option for
transport management with transports of copies - see Section 8.1.4) is to carry out
checking upon release of the respective transport task or after completion of the
development objects by the developer. This requires implementation of BAdI CTS_RE-
QUEST_CHECK.®

24 Available as of NetWeaver 7.4 or specific SPs in 7.0 and 7.3.
25 How this is implemented for the ATC is specified http://scn.sap.com/community/abap/blog/2016/04/20/how-to-
perform-an-atc-check-automatically-during-transport-task-release

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

22

http://scn.sap.com/community/abap/blog/2016/04/20/how-to-perform-an-atc-check-automatically-during-transport-task-release
http://scn.sap.com/community/abap/blog/2016/04/20/how-to-perform-an-atc-check-automatically-during-transport-task-release

n
w
=
-
w
=
=)
o)
©
=
=
=
<<
o
0]
o
x
o
o~

Many of the rules and recommendations for development
objects in these guidelines can be checked automatically
with the tools. Developers should therefore be familiar
with the tools and they should be applied early on in the
development process. General testing with Code Inspector
or ATC on the release of transports should be configured.
Selection or configuration of a check variant is a prerequisite
in this respect. Who may grant exemptions in the case

of failed checks should also be established (e.g. quality
assurance officer or development manager).

Various third party tools are also available to check source code for infringements of
development guidelines even at design time and provide developers with direct feedback
on certain code quality characteristics. In addition to design time checking, some of the
tools also offer the option of automatic correction.

Section 7 and particularly subsection 7.2.2 ‘Automatic testing’ contain comprehensive
recommendations for this area.

ADDITIONAL SOURCES:

The procedure for implementing BAdI CTS_REQUEST_CHECK for Code Inspector is
specified in the 'SAP Code Inspector User Manual’ (SAP Press), as well as in this blog.

The book also describes the integration of a number of customer checks in Code
Inspector/ATC. A blog is also available on this topic.

2.10 HARD CODING, MAGIC NUMBERS

Problematic hard coding is regarded as the coding of data such as texts, numbers,
user names etc. directly into a program, which may then change; for example, because
they actually comprise configuration information (interface paths...). Hard coding
initially saves development time, but inevitably leads to higher costs over the entire
lifecycle of the application because, for example, configuration changes would necessi-
tate modification of the program. If the same value is hard coded in numerous programs
or subroutines, then an additional problem arises when a change is required all the
positions have to be modified (see also ‘Avoiding code copies’ in Section 2.3).

A related theme involves Magic Numbers, in other words numbers that are used in a
program without explanation. The problem here is one of program readability and

maintainability. Again, costs may also be saved initially in this case, but nevertheless
are likely to be incurred on later modifications, perhaps at an even higher rate if the

meaning of the magic number first needs to be determined.

A further aspect when using hard coding and magic numbers is that this may be a sign
of implementation without any consideration for object-oriented concepts. One

example being CASE statements on constants, which can be avoided either using the
refactoring method ‘Replace Code with Subclasses’? or via filter BAdIs?’.

| B

Problematic hard coding should be avoided. Magic numbers

should be replaced by distinctly named constants or fur-
nished with a suitable comment.

L]

The use of constant names that are identical to the value is to be expressly avoided as
this will give rise to faulty information if the value is changed. (Paradoxically, change-
ability is the main reason for using constants.)

26 https://sourcemaking.com/refactoring/replace-type-code-with-subclasses
27 See also http://scn.sap.com/docs/DOC-10286

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

23

http://scn.sap.com/community/abap/testing-and-troubleshooting/blog/2013/09/19/how-to-trigger-atc-or-code-inspector-checks-during-the-release-of-a-transport-task
http://scn.sap.com/community/abap/blog/2006/11/02/code-inspector--how-to-create-a-new-check
https://sourcemaking.com/refactoring/replace-type-code-with-subclasses
http://scn.sap.com/docs/DOC-10286

n
w
=
-
w
=
=)
o)
©
=
=
=
<<
o
0]
o
x
o
o~

The definition of constants should be in the form of an attribute in a specifically
dedicated interface or an abstract, final class. We do not recommend the use of
constant includes. Within the scope of large scale developments, it may be a good idea
not to store all the constants in one interface, but to distribute the constants to
different interfaces according to business topic. Additionally, interfaces can be
furnished with a tag interface (the same as BAdI Interface IF_BADI_INTERFACE]. This
ensures the discovery of interfaces that contain constants.

When introducing constants ensure that these can be found by other developers,
otherwise identical constants may be potentially duplicated on the system. Unfortunately,
there is no dedicated SAP tool that assists with this task. An alternative is to access the
SAP ecosystem and use the openly available tool ConSea.?® One option is to document
the constants within an interface outside the system, but it is likely that maintenance of
the external documents will be neglected. As of NetWeaver 7.50, ABAP Doc documen-
tation can be exported like with JavaDoc. If the TREX search is installed and configured,
this can be used to carry out a performant search.

2.11 AUTHORISATION CHECKS IN SOURCE CODE

The required authorisation objects have to be checked to access and present data.
When standard objects are used, the check should utilise the corresponding SAP
standard authorisation objects (simplifies maintenance of the required roles). SAP
standard authorisation objects cannot generally be used to check customer data
objects. Customer authorisation objects can be implemented and checked for this
purpose. For further information see Section 5.1.1.

2.12 PROGRAMMING MODEL: OBJECT-ORIENTED VS. PROCEDURAL

It is advisable to move from a procedural programming model to object-oriented
programming to promote future-proof development and encapsulate objects.
Object-oriented development should be used exclusively in the case of new projects.

28 Cf. GitHub

Object-oriented development was designed so that logically coherent operations can
be uniformly encapsulated within objects. Amongst other things, this increases the
reusability of source code. In particular, such objects can be easily extended or
changed by other developers to meet their needs without compromising the basic
functions (open-closed principle). Additionally, core functionalities or individual
variables can be specifically protected against undesired read and write accesses by
invoking programs. An initial overview of the basic principles of object-oriented design
can be found, for example, on Wikipedia.?’

The introduction of object orientation into ABAP with ABAP Objects went hand-in-hand
with a revision of the language and the unification of constructs. Utilisation of ABAP
Objects therefore results in enhanced maintainability. For smaller programs?®’, this
enhanced maintainability can be achieved by replacing FORM routines with the class
methods of local class lcl_main without the need to undertake a strictly object-orient-
ed (re-)design.

SAP has now categorised procedural development in ABAP, for example using FORM
routines, as obsolete. In recent years, procedural development has also proved to be
extremely opaque, complex and error-prone due to global variables and includes. This
is a further reason for switching to object-oriented programming.

| B

We recommend that wherever possible new development
projects are to be implemented using the principles of
object orientation with ABAP Objects. Obsolete procedural

ABAP language constructs such as FORM routines should
be avoided and replaced with constructs from ABAP Objects.
This recommendation is congruent with the specific rules
‘ABAP Objects as a programming model” under the program-
ming guidelines in the ABAP keyword documentation.

L]

29 https://en.wikipedia.org/wiki/Object-oriented design
30 The upper limit of a 'small program’ in this case is deemed as being between 200 and 500 lines, depending on
the coding style and the complexity of the implemented functions.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

24

https://github.com/TheRealTier/ConSea
https://en.wikipedia.org/wiki/Object-oriented_design

3. PERFORMANCE

Possible counter-arguments:

o Available ABAP Objects team expertise and the planned and realistically expected
development of expertise

o Systems with older Basis/NetWeaver release that include ABAP Objects that are
less mature (prior to SAP Web Application Server 6.20) or in systems/modules in
which procedural components also dominate in SAP standard.

ADDITIONAL SOURCES

1. Horst Keller and Gerd Kluger, Not Yet Using ABAP Objects? Eight Reasons Why
Every ABAP Developer Should Give It a Second Look, Sap Professional Journal

2. Horst Keller and Gerd Kluger, NetWeaver Development Tools ABAP, SAP AG

3. Bertrand Meyer, Objektorientierte Softwareentwicklung, Hanser 1990,
ISBN 3-446-15773-5

4. Bertrand Meyer, Object-Oriented Software Construction, Prentice-Hall 1994

2.13 DEVELOPMENT LANGUAGE

All developers should log on with the same language and maintain language-depen-
dent texts in that language. Language-dependent texts should always be created in
translatable form.

3 PERFORMANCE

In the following subsections we recommend a number of best practices that should be
observed during day-to-day ABAP development work to ensure appropriate perfor-
mance of the developed application. Any specifics of the SAP HANA as compared to
other databases will be highlighted in the respective subsection.

3.1 THE PRINCIPLE OF AVOIDANCE

“The components of a computer system that are the most secure, fastest, most accurate,
cheapest, reliable and easiest to maintain and document are those that are not there.”
(Gorden Bell)

-

Avoid all unnecessary source code, including
unnecessarily executed source code.

3.2 PERFORMANCE OPTIMISATION ONLY IN THE APPROPRIATE AREAS

Performance optimisation (insofar as it increases overheads and complexity) should
only be carried out in the appropriate areas. Performance must first be measured to
ascertain where these "hot spots’ are.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

25

3. PERFORMANCE

Focus first on clear and simple implementation of the
essential logic. Then run performance tests on a
system with sufficient data volume (usually a test
system] in order to subsequently optimise perfor-
mance at the relevant hot spots if the program is
indeed slower than desired by the user. Exceptions to
this involve programs where it is known in advance
that they are performance critical. For these pro-
grams any decisions should be made at design time,
e.g. use of parallelisation.

We recommend starting the search for performance
bottlenecks with a runtime analysis (transaction
SE30/SAT) with full aggregation. This should clarify
whether the runtime results from interaction with the
database or from processing the data loaded into the
main memory.®' Important is that representative and
realistic data is processed so as not to be led down
the wrong track by unusual processing patterns. If
more than half of the runtime is taken up with data-
base processing, a closer analysis of the SQL com-
mands should be carried out using transaction ST05.
If more runtime is taken up by ABAP processing, a
more in-depth analysis is undertaken using transac-
tions SE30/SAT; whereby the aggregation levels are
reduced in stages to obtain more precise feedback
about critical points in the program. Results are
compared and documented after each optimisation
stage.

B

3.3 USE EXISTING TOOLS

The tools already available in the SAP system provide excellent support for creating
performant applications and analysing performance issues.

Key transactions are

ATC/SCI - ABAP Test Cockpit/Code Inspector
Static analysis of performance aspects (amongst other things). Integrated within
Workbench and ADT, administration through transactions ATC and SCI

SAT - runtime analysis
Full analysis at runtime

ST05 - Performance Trace
Analysis of SQL commands executed within a program (and other events)

In addition, a number of standard tools are available that can also be used for perfor-
mance analysis

SM50/SMé66 - Work Process Overview

Debugger - step-by-step execution of source code
ST03 - Workload monitor

ST22 - Analysis of runtime errors (lack of storage)

STAD - Workload analysis (post-runtime])

The following tools are suitable for specific performance-related areas

ST04 - DB Performance Monitor

DBO5 - Analysis of Table with respect to Index Fields

31 Aninitial overview of runtime distribution between the database and application server is also available via
the transaction STAD.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -26-

3. PERFORMANCE

o ST10 - Table call statistics to check table buffering
e ST12 - Single Transaction Analysis (end-to-end trace)

o S_MEMORY_INSPECTOR -
Memory Inspector (also integrated within SAP GUI Debugger)

o SQLM/SQLMD - SQL Monitor
Recording and analysis of all SQL requests within the production system. New
from NetWeaver 7.0/7.4 onwards (For details see Note 1885926).

o SWLT - Performance Tuning Worklist
Work list based on ATC and SQL Monitor results.
New from NetWeaver 7.0/7.4 onwards (specific SPs, see SAP Documentation).

Within the context of the SAP HANA rollout, SAP provided further tools or extensions
to existing tools to identify performance problems early on and establish a procedure
to enable iterative optimisation of the performance of applications on SAP HANA.

Performance analysis in this context encompasses static source code analysis through
ATC with the three testing variants FUNCTIONAL_DB, FUNCTIONAL_DB_ADDITIONAL
and PERFORMANCE_DB. These variants carry out static code analysis within the
scope of using SAP HANA as the DB. Further information is available in Note 1912445
- ABAP Custom Code Migration for SAP HANA - recommendations and Code Inspector
variants for SAP HANA migration.

The ABAP SQL Monitor was also introduced. This tool enables system-wide tracing of
all SQL requests over a long period with additional recording of the entry points
(transactions, reports, etc. within the scope of which an SQL command was executed).
More detailed information on SQL Monitor can be found on the SAP Community
Network in the document ‘Optimising Custom ABAP Code for SAP HANA - The New
ABAP SQL Monitor’.

Consolidation of the SQL Monitor runtime screen and static analysis through ATC
occurs via the SQL Performance Tuning Worklist. This enables setup of a work list for
performance optimisation that can be processed following analysis and prioritisation.
Further information on this procedure can be found on the SAP Community Network in
the document ‘Best Practice Guide - Considerations for Custom ABAP Code during a
Migration to SAP HANA'.

3.4 DATA MODEL AND DATA ACCESS
3.4.1 DATA MODEL

The data model structure forms the basis for performant applications. A pragmatically
normalised data model can work more efficiently with data and indices.?? Independent
of the programming language ABAP, normalisation rules are adhered to in this respect.
Moreover, during the data modelling process, data elements in the data dictionary
should be respectively assigned to domains. This results in greater transparency and
improved maintenance.

3.4.2 DATABASE ACCESS

When accessing the database, five golden rules (source: SAP, see reference in Section
3.7) are to be complied with to ensure a performant execution of programs with
database access. These five rules are:

1. Keep the result sets small - if the volume of selected data is kept small, loads are
avoided both on the database system and on the network during transfer of the
data to the application server.

2. Minimise the amount of transferred data - as the transfer of data between the
database and application serveris in blocks, it is best to keep the volume of data
small to minimise the load on the network.

3. Minimise the number of database access operations - reducing the number of
access operations to the database system minimises the load on both the system
and the network as each access constitutes more work for the database system
administration.

4. Minimise number of queries - using WHERE and HAVING clauses as recommend-
ed further optimises performance if the volume of searching the database system
is reduced by applying the appropriate indices.

5. Minimise (unnecessary) database loads - unnecessary database loads should
generally be avoided; for example, making calculations via database query, the
results of which are not required in the application. In addition, the application
Server ABAP provides numerous options for minimising database loads through
buffering.

w

2 The S/4HANA model goes a step further and denormalises the data model. This is possible due to the type of data storage
in the HANA in-memory database and provides a simpler data model and greater performance for data queries.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

https://launchpad.support.sap.com/%23/notes/1885926
https://help.sap.com/saphelp_nw74/helpdata/de/cf/b2a58ff7834bebaad6dda30febdd82/content.htm?frameset=/de/71/3ff185b9b347aaacbe3ada28d4fa72/frameset.htm¤t_toc=/de/e4/e3e6e3a8514af2be58552a3ba40b1b/plain.htm&node_id=34
https://launchpad.support.sap.com/%23/notes/1912445
http://scn.sap.com/docs/DOC-47444
http://scn.sap.com/docs/DOC-47444
http://scn.sap.com/docs/DOC-46714
http://scn.sap.com/docs/DOC-46714

These five rules apply to all database systems. Within the context of code push downs
and code-to-data paradigms in SAP HANA, in contrast to non-HANA databases a modi-
fied weighting of the rules is to be observed. This is explained in Section 3.6.

Optimised quer
Regardless of code push down, when using SAP HANA as a database, Rule 4 on the P g y

incorporation of indices has greater relevance. In SAP HANA, as few indices as Wh.en S_elgctlng _data' try t.o _use one of_the existing
possible should be applied. In principle, column-based storage enables each column to indices in its ?nt'retY- If this is nqt possible, at least try
be used as an index, so theoretically no more indices are required: however, scenarios and use the first elements of an index so the database

can arise, particularly in OLTP, where it makes sense to incorporate indices in SAP can apply the index to a search.
HANA, to avoid potential poor performance and/or high CPU consumption by SAP

HANA. The relevant details can be found in SAP Note 1794297 - Secondary Indices for Line reduction ..
the Business Suite on HANA 3 Use the WHERE clause to minimise the data to be

transferred to the ABAP system. Use SELECT SINGLE/
UP TO n ROWS if only single lines are required.

3. PERFORMANCE

Aggregates
|7 Aggregates (MIN, MAX...] are often (in the case of
Reduction of columns
Avoid transfer from the database of unnecessary
columns, in particular large objects (for example
strings), to prospective performance-critical areas
(see Section 3.2).

HANA always) practical as they have been previously
analysed on the database server, so less data has to

be transferred. However, be aware that any existing

table buffering cannot be used by the system in this

case, which could have a converse effect.

Updates
Similar to column reduction when reading, the number
of columns to be written can be reduced using the
statement UPDATE SET. This statement should be
used wherever possible.

Note: contrary to general opinion, SELECT * and INTO
CORRESPONDING FIELDS themselves often do not

pose a problem in these cases as the system intelli-
gently analyses the source and target fields at compi-
lation time.34

33 SAP Note 1794297 - Secondary Indexes for the Business Suite on HANA
34 Cf.SCN blog ‘Why INTO CORRESPONDING is much better than its reputation’

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -28-

https://launchpad.support.sap.com/%23/notes/1794297
http://scn.sap.com/docs/DOC-33976

3. PERFORMANCE

Large volume operations
Each execution of an Open SQL statement is associated
with a certain overhead (parsing, check against the
DBMS statement buffer etc.). Each statement should
therefore transfer as much required data as possible
at once. If the data for 50 orders is required, for
example, the data should not be retrieved through 50
individual SELECTSs, but rather just one single SELECT
query. This is implemented using the additions INTO
TABLE for reading or FROM TABLE for writing access
(array operations).

Avoiding MODIFY
Do not use MODIFY <DB table>. The statement is
extremely critical from a performance perspective:
even using array operations an UPDATE has to be
executed initially per array line, and in case of an
error a subsequent INSERT, all of which can unneces-
sarily hamper performance.

VIEWS/JOINS
Nested and looping SELECT statements should be
avoided. Use instead JOINS, views or the addition FOR
ALL ENTRIES.

Overly extensive JOINS (more than 5 tables) should be
avoided as they could hamper the DB Optimiser.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

Observe the following when using FOR ALL ENTRIES:
If the internal table in the FOR ALL ENTRIES state-
ment is empty, the WHERE clause is ignored and all
DB table entries selected. Normally this is not desired
and may result in performance problems. The prob-
lem can be solved by checking the size of the table
prior to executing the query.®

If the internal table in the FOR ALL ENTRIES state-
ment contains duplicated entries, this may result in
data sets loading twice from the database or unnec-
essarily bloating the SELECT statement in the DB
interface. We recommend executing DELETE ADJA-
CENT DUPLICATES for the internal tables prior to
executing the query.

As using FOR ALL ENTRIES activates an implicit
DISTINCT select operation, all key fields should be
selected as otherwise there is a possibility that not all
relevant data sets will be read.

|

3.4.3 ABAP CORE DATA SERVICE (CDS) VIEWS

ABAP CDS Views is a DDIC artefact introduced with NetWeaver 7.40 SP05 that offers
more extensive options for defining views than the classic SE11 Views. In addition to
classic SQL functionalities such as outer joins and the Case statement, it also encom-
passes SQL functions such as currency conversion. Furthermore, CDS Views also
offers the option of defining associations between tables and consequently defining
business objects in a reusable manner in the form of views.

35 SAP provides a Runtime Check Monitor with NetWeaver 7.40 that carries out a runtime check to address this problem.
See also Note 1931870 - Downport of transaction SRTCM to SP02 / 03 / 04

https://launchpad.support.sap.com/%23/notes/1931870

3. PERFORMANCE

Further benefits include options to parameterise views [(not supported for all databases
in NetWeaver 7.40) and store annotations in a view or to view fields. From NetWeaver
7.50 onwards, the latter enables the straightforward exposure of views with OData
Service and use of views and annotations to automatically develop UI5 interfaces (e.g.
via Smart Templates). CDS table functions that enable access to SQL script are also
available on SAP HANA. As such, all SAP HANA features (e.qg. calculation views) are
available via CDS Views. Further information on ABAP CDS Views can be found in ABAP
keyword documentation for NetWeaver 7.40% and NetWeaver 7.50°7 as well as on the
commensurate SCN landing page.® Please note that ABAP CDS Views can only be
created using ABAP Development Tools in Eclipse.

3.5 INTERNAL TABLES AND REFERENCES

Internal tables are a core construct for developing applications with ABAP. In addition
to enabling database access, they are also the secondary source of performance
problems. Things like the selection of the right type of table and a suitable key are not
really a problem with smaller data volumes; however, where larger data volumes are
processed, areas previously deemed non-critical from a performance perspective can
be the cause of considerably prolonged runtime.

36 http://help.sap.com/abapdocu_740/de/index.htm ?file=abencds.htm
37 http://help.sap.com/abapdocu_750/de/index.htm ?file=abencds.htm
38 http://scn.sap.com/docs/DOC-70385

We recommend adhering to the following guidelines for
increasing application performance:
Choose a suitable table type for subsequent applica-
tion. Details on this are available in the keyword
documentation under ‘Selection of table type’.??

If a Sorted or Hashed table type is accessed, this should
always occur using the appropriate (partial) key.

|

As of AS ABAP 7.02 in addition to the primary key, additional secondary keys can be
defined for internal tables that are rarely changed, but are read using more than one
access pattern. The primary key is defined and used as previously. Secondary keys can
be of a different type than the primary key (sorted, hashed).

For example, an additional sorted type key can be defined for a hashed table that has
an unambiguous primary key. This additional key makes it possible to effectively
access data in the table from another perspective (ambiguous or partial key possible)
without the need to load the data a second time into the main memory and in the case
of changes manually ensure consistency between the two tables.

39 Access as described in Section 2 above. Path: ABAP - Reference = Processing internal data >
Internal tables—> Internal table overview

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

30

http://help.sap.com/abapdocu_740/de/index.htm?file=abencds.htm
http://help.sap.com/abapdocu_750/de/index.htm?file=abencds.htm
http://scn.sap.com/docs/DOC-70385

3. PERFORMANCE

Similar to DB access, there are single line and mass
access operations for internal tables. Mass access
operations should be used whenever possible be-
cause they perform better than multiple single access
operations.

When using the SORT statement avoid implicit sorting
and for reasons of better verification always specify

the desired sort fields.

Before applying the DELETE ADJACENT DUPLICATES
statement, ensure the table is sorted according to the
same fields so that duplicate entries are actually
deleted.

Pure existence checks on internal tables should
always be carried out using READ TABLE TRANS-
PORTING NO FIELDS.40

3.5.1 FIELD SYMBOLS

Field symbols offer the option of referencing existing data, e.g. internal table lines.
Working with references is significantly more efficient than copying data. As such, field
symbols should be used wherever possible. Notwithstanding, be aware of the fact that
when using field symbols, any change to the value of a field symbol will also overwrite
the value of the referenced data element.

40 From NetWeaver Release 7.40 SP02 onwards the function LINE_EXISTS(] is available and should be used for this type of check for
reasons of enhanced readability.

B

Use standard field symbols for accessing internal tables.

|

3.5.2 PASSING PARAMETERS

Passing parameters by value should only be carried out where stipulated on technical
grounds (e.g. RFC function modules, returning parameters in functional methods). This
saves the unnecessary copying costs of passing parameters. This applies particularly
for parameters with deep data types such as internal tables or strings. Moreover, as
few parameters as possible should be defined as this increases source code readabili-
ty. The Extended Program Check identifies superfluous variables and parameters,
thereby supporting clean up.

B

Use as few parameters as possible. Generally use passing
by reference and only use passing by value in exceptional
cases deemed technically necessary.

|

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

3. PERFORMANCE

3.6 CODE PUSH DOWN

Using SAP HANA as a database system can greatly enhance performance, particularly
of data-intensive applications, if data-intensive operations are delegated to the
database layer. Delegation of application server logic in SAP HANA is called Code Push
Down. The objective of this procedure is to no longer transport data to the application
layer to process it there (data-to-code], but rather to execute the logic where the data
resides (code-to-data).

In combination with the SAP HANA architecture, this objective consequently results in
a different weighting of the rules defined in Section 3.4.1 in comparison to a non-HANA
database. The first three rules (keep the result sets small, minimise the amount of
transferred data and minimise the number of database transfers) become more
significant in the wake of a Code Push Down, while the fourth rule (optimise the search
overhead) becomes less important due to the column-based storage of data.

The fifth rule involves keeping unnecessary load away from the database, as the proce-
dure consciously delegates data-intensive operations to the database and thus burdens it.

The extended language scope of ABAP and Open SQL in SAP NetWeaver 7.40 and 7.50
essentially enables Code Push Down in two ways:

o Using Open SQL expansions and ABAP CDS Views

o Using ABAP Managed Database Procedures (AMDP] and as a last option
Native SQL

Which and to what extent the two options are used is highly dependent on the objective.
In both cases existing code has to be modified. The complexity of such modification is
lower using Open SQL and ABAP CDS Views than using AMDPs or Native SQL. If the
primary aim is to maximise application performance, then there are limits to Open SQL
and ABAP CDS Views that can only be overcome by AMDPs or Native SQL. A further
aspect is that when using AMPDs or Native SQL, a more in-depth knowledge of SAP
HANA specifics (e.g. SQLScript] is required to achieve optimum results. General
consideration should be given to the fact that compatibility with other databases can
only be ensured using Open SQL and ABAP CDS Views (with the exception of table
functions). Database independence is lost if AMDPs and Native SQL are used.

We recommend avoiding the use of external views and
database procedure proxies where possible due to the
various lifecycle problems in AS ABAP and SAP HANA
stack.

If carrying out application optimisation using Code
Push Down, when selecting a code for optimising, we
recommend the SQL Performance Tuning Worklist
(transaction SWLT), which provides a prioritised list of
source code positions on the basis of results from
static code checks using ATC and runtime information
from SQL Monitor. Recommendations specified in
Section 3.3 are again to be observed.

We do not recommend using Native SQL.

ADDITIONAL SOURCES

1.

2.

SAP course BC490 offers a good introduction to ABAP performance optimisation.

Blog posts by Olga Dolinskaja in the SAP Community Network provide an excellent
introduction to the performance analysis tools SAT/SE30 and ATC

A description of profiling in Eclipse is available in the blog post by Thomas Fielder

The original 5 rules pertaining to SQL access operations are available now (7.40)

in streamlined form in ABAPDOCU/F1 Help, under ABAP - Reference/Processing
External Data/ABAP Database Accesses/Open SQL/Performance Notes. A link to
comprehensive recommendations for secondary indices is also featured on this page.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

32

http://scn.sap.com/docs/DOC-41223

>
(&S]
<
o
=)
o
(&)
<<
[=]
4
<
(9]
(2]
w
P4
=
(%2}
o)
[21]
o
o
~

5. A more extensive version of the 5 rules is still available for release 7.31 on the

following page: Performance note 7.31

6. Siegfried Boes, 'Performance-Optimierung von ABAP-Programmen’, dpunkt

Verlag 2009, ISBN 3898646157

7. Hermann Gahm, ‘ABAP Performance Tuning’, SAP Press, 2009, ISBN 978-1-

59229-555-5

8. Hermann Gahm, Thorsten Schneider, Eric Westenberger, Christiaan Swanepoel

9. 'ABAP-Entwicklung fir SAP HANA', 2015, ISBN 978-3-8362-3661-4

4 ROBUSTNESS AND ACCURACY

Robustness is the ability of a program to deliver correct results and not to abort even
in unfavourable circumstances. This principally means programs recognise errors and
respond to them in a way that does not impair the desired functionality.

Conversely, sometimes errors cannot be meaningfully handled and in many cases imple-
mentation of genuine error handling with at least one exception or error message can
prove uneconomical as the probability of occurrence is deemed exceptionally minimal.
In such cases it is important to enable fast error location in the maintenance phase
instead of concealing the cause of the error due to a ham-fisted error handling routine.

In this section we address best practices that foster the robustness of custom-devel-
oped applications.

Many aspects can be tested automatically using Code Inspector/ATC, see also Section
7.2.2 ‘Automatic tests’.

4.1 ERROR HANDLING

The ABAP runtime environment offers a variety of options for indicating an error to an
application. These options are listed below together with best practices.

4.1.1 SY(ST)-SUBRC CHECKS

For a great many of ABAP commands, the global variable SY(ST)-SUBRC is set by the
SAP kernel after the execution of a program. Generally a return value of zero indicates
a successful execution.

Sy-subrc should be checked after all ABAP commands that set it. As an alternative to a
dedicated evaluation of sy-subrc, the statement ASSERT sy-subrc =0 can be used if the
programmer thinks that no error exists or it cannot be meaningfully handled within the
application. In the case of an error, the use of this statement will cause a program
abort with the runtime error ASSERTION _FAILED.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

33

https://help.sap.com/saphelp_nw73ehp1/helpdata/de/fc/eb3b7e358411d1829f0000e829fbfe/content.htm?frameset=/de/aa/4734a00f1c11d295380000e8353423/frameset.htm¤t_toc=/de/d3/2e974d35c511d1829f0000e829fbfe/plain.htm&node_id=187&show_children=false

>
(&S]
<<
o
=)
o
(&)
<<
[=]
4
<<
(9]
(2]
w
P4
=
(%2}
o)
[21]
o
o
~

This concise additional effort is well worth it as errors are recognised immediately and
can be precisely located. It is a much better approach than having to endure ‘puzzling’
system behaviour that may well go unnoticed for a while and the root cause is frequently
only discovered after extensive detective work. Handling of sy-subrc can be automati-
cally checked using Code Inspector/ATC.

For programs involving mass processing, for example, the continuation of which must
be ensured even in the event of an error in an individual object, genuine error handling
is required (error recording, terminate this loop pass, etc.).

| B

With function module calls always explicitly set the special

value OTHERS, as the list of exceptions may change after
the calling program was implemented.

L]

4.1.2 MESSAGE STATEMENT

The MESSAGE statement is used to output status or error messages. MESSAGE
statement behaviour is dependent on the type of message (status, information, error,
exit) and the processing mode (dialog or background).

| B

Avoid MESSAGE statements outside of modules that com-
municate directly with the user or are located in a defined
dialog layer.

|

MESSAGE statements in specific message type and processing mode configurations
may, as a result of a screen change, trigger implicit COMMITs in classic dynpros or
interrupt connections in an RFC function call. Use class-based exceptions in the
applications core to indicate errors. An exception to this rule is the use of the state-
ment MESSAGE * INTO to set SY(ST) fields.

4.1.3 CLASS-BASED EXCEPTIONS

Class-based exceptions are an object-oriented error handling mechanism. A program
identifies an error and throws an exception. If the caller does not catch the exception, it
is propagated upwards through the call stack until caught at another point. If the exception
is not handled in the call stack it terminates in a short dump. Exceptions can also be
used for procedural source code.

Class-based exception handling has two essential advantages over classic error
handling:

1. The error handling source code can be collected at a few points instead of having
to be repeated after every method call and the like.

2. Exception objects may not only contain error messages, but also further attributes
such as internal tables etc. This means more details can be displayed to the user
for error analysis.

Itis important to catch all exceptions that can be handled appropriately at the respec-
tive handling point. Exceptions that cannot be suitably processed locally must be
declared within the procedure (methods, function modules, subroutines), so that to the
calleritis clearly apparent that such exceptions can occur.*! Important is coherent
usage: consistent exception classes should be used for identical error situations.

Exceptions are caught using the ABAP commands TRY...CATCH...ENDTRY. Correspond-
ingly, all exceptions of all called procedures that can raise class-based exceptions must
be handled at some point in the call stack by a TRY...CATCH to guarantee a robust
process.

41 Adetailed differentiation of exception categories and the commensurate user recommendations can be found in the ABAP
keyword documentation. Path: ABAP - Programmer guidelines = Architecture = Error handling —Exception categories

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

| B

Use CATCH blocks essentially to catch superclass exception
Do not leave exception handling blocks empty, as this objects as error handling routines normally work indepen-
makes it impossible for the caller to react properly to
the exception situation. The only viable option in such
cases is to propagate the exception. An exception to
this rule is, for example, catching exceptions in a loop.
However, an explanation is then required in a comment
as to why neither handling nor propagation of the

exception is necessary.

dently of the specific source of the exception. Only in certain
cases is it meaningful to purposefully catch exception
subclass objects in prefixed CATCH blocks to implement
various error handling routines.

L]

4. ROBUSTNESS AND ACCURACY

Define an exception superclass that inherits from
CX_STATIC_CHECK for new developments. Define for
each application component one or more subclasses The following source code pattern can be used to throw multiple exceptions:

that relate to message classes with error messages

(automatic implementation of the interface IF_T100_ : . . — .

MESSAGE]. In all new methods and function modules, DATA: 1x_validaton_exception type zcx_validation_exception.

For chaining exceptions, the attribute PREVIOUS is applied when creating an exception.

declare the exception superclasses as possible IF ...

exceptions. This ensures less effort is incurred later “ Check 1 unsuccessful

on, for example through additional checks. Ix_validation_exception = new ...
ENDIF.
IF ...

“Check 2 unsuccessful
1x_validation_exception = new .. EXPORTING
PREVIOUS = 1x_validation_exception. “ Important: chaining

In the case of enhancements to non-customer code, in some circumstances it may not ENDIF

be possible to add exception declarations to methods or function modules without

modification. In such cases it is possible to use exception classes that inherit from

CX_NO_CHECK. This enables error handling without explicitly declaring the exception .. “ other checks
class in method signatures and without aborting the program during runtime.

IF 1x_validation_exception IS BOUND.
RAISE EXCEPTION 1x_validation_exception.

Declare subclasses of CX_DYNAMIC_CHECK only in method signatures in which the
caller can prevent an exception occurring by transferring suitable parameters. As
such, at the calling point no unnecessary TRY-CATCH block needs to be supplemented ENDIF.
and the signature need not be complemented by an exception class.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -35-

>
(&S]
<<
o
=)
o
(&)
<<
[=]
4
<<
(9]
(2]
w
P4
=
(%2}
o)
[21]
o
o
~

B

Always write error handling routines in CATCH blocks in

a way that ensures all chained exceptions are processed,
save for where previous error messages are not relevant
to error handling.

|

4.1.4 EXCEPTIONS THAT CANNOT BE HANDLED

Some exceptions cannot be handled in ABAP source code and therefore inevitably lead
to an abort of the application and a short dump. In certain cases it is possible to
proactively check the preconditions of a statement that raises an exception that cannot
be handled prior to execution.

For example, the OPEN DATASET statement triggers a short dump if the user does not
have sufficient authorisations to open a file. To prevent this, user authorisation needs
to be proactively checked using the function module AUTHORITY_CHECK_DATASET.

4.2 CORRECT IMPLEMENTATION OF DATABASE CHANGES
4.2.1 LOCK OBJECTS

To prevent data inconsistencies, in applications using a pessimistic lock concept*? the
commensurate objects have to be locked prior to any change on the database. Related
objects can only be changed after all related entities are successfully locked.

SAP locks are valid across multiple database LUWs (Logical Unit of Work], enabling
consistent database changes to be performed across the entire business object being
changed.

42 For more on pessimistic/optimistic locks see, for example, http://www.agiledata.org/essays/concurrencyControl.html

The locks should be set as specifically as possible in order to only lock the relevant
objects within an LUW. Furthermore, locks should be retained for as short a time as
possible but as long as necessary.

To change SAP standard data objects directly at database level use the respective SAP
standard lock functions. This ensures consistent behaviour as these are also used for
standard transactions.

For custom developments, commensurate lock objects and related lock functions
should be implemented.

After an update has been performed, the object lock is released again by calling the
appropriate dequeue function module. In this context, pay special attention to import-
ant scope parameters if update function modules are used.

To ensure locked objects are unlocked even in exceptional circumstances, class-based
exception handling also encompasses CLEANUP blocks.

In addition to pessimistic locking with exclusive locks, optimistic locking can also be
used, which is based on the comparison of time stamps from the point of time of the

change. Which locking concept is selected for new development projects is determined
on a case to case basis.

ADDITIONAL SOURCES

1. ABAP keyword documentation for data consistency

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

http://www.agiledata.org/essays/concurrencyControl.html
http://help.sap.com/abapdocu_750/de/index.htm?file=abentransaction.htm

4.2.2 DATABASE ACCESS FRAMEWORKS 4.3 LOGGING

Errors, exceptions and log messages should principally be stored in the business
|7 application log to enable centralised checking of such (via transaction SLG1).

Access is via the function group SBAL, which is well documented within the system.

Prior to manually developing a database access layer,
evaluate existing frameworks provided by SAP. The main advantages of using business application logs are:

L 1. Centralrepository: the business application log enables messages to be managed
centrally, which provides a clear overview and facilitates application administration.

>
(&S]
<<
o
=)
o
(&)
<<
[=]
4
<<
(9]
(2]
w
P4
=
(%2}
o)
[21]
o
o
~

For implementing database access, amongst other frameworks, SAP offers its 2. Reusability: the business application log and/or the related function modules and
Business Object Processing Framework (BOPF).** Induction in this or any alternative classes provide comprehensive functionalities for logging, avoiding the need for
framework can reduce outlay in the medium-term, also as frameworks normally custom development. Examples of the functionalities are:

provide additional infrastructure components such as external interface tools.
Persistent storage of messages within the log

Hierarchical display of messages and aggregation into problem clusters
Integration of additional custom fields into log objects

Interactive reading of information upon message display and augmented
information

Using classic dynpro user interfaces or remote calls from function modules may cause e Integration of log display into custom applications/Uls via sub-screens,
the program logic from numerous work processes to be executed one after another on controls or pop ups

an ABAP application server. Each change of work process is linked to an implicit
database commit. If no framework is applied for the database access, it may be
necessary in custom developed programs to initiate measures to bundle database
changes. For further information on this subject, we refer you to the data consistency |7 —|
section of the ABAP keyword documentation.*

o o0 oo

4.2.3 UPDATE CONCEPT

It is a good idea to wrap SBAL functions once with a class
to enable short and simple application through

MESSAGE 1002(zmessage) WITH 1lv_value 1 INTO

DATA(lv_dummy).
lo_logger->add _msg from sy().

and at the same time maintain function of the where-used
list.

L]

43 http://scn.sap.com/docs/DOC-45425
44 ABAP keyword documentation on data consistency

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -37-

http://scn.sap.com/docs/DOC-45425
http://help.sap.com/abapdocu_750/de/index.htm?file=abentransaction.htm

L
(&)
=z
=l
-
o
=
o
(&]
(=]
=z
<
>
=
o
s
O
L
wn
o
<<
m
<
1)

The more complex calling of SBAL functions is then hidden within the class.

B

When creating business application logs provide an expiry
date (BAL_S_LOG-ALDATE_DEL after calling BAL_LOG_
CREATE) and plan a regular clean up using transaction
SLG2.

|

A custom log table (DB Tables) can be a meaningful replacement for or supplement to a
business application log when comparing cross-run values. This could be practical, for
example, for daily batch runs, which then log 'n data sets of type x processed .

A further supplement involves the activatable log points (LOG-POINT statement in
combination with transaction SAAB, see reference 3). However, these must be first
activated and they only log the respective number of events and field information for
the last entry.

ADDITIONAL SOURCES

1. SAP Application Log - User Guidelines

2. Examples for using BAL functions in: Thorsten Franz, Tobias Trapp: ABAP
Objects: Application Development from Scratch. SAP Press, 2008.
ISBN 9781592292110

3. ABAP keyword documentation on checkpoints and checkpoint groups

5 ABAP SECURITY AND COMPLIANCE

This section describes how a programming error in ABAP can negatively impact on
security within a company and what countermeasures exist. The subject of application
security is principally relevant to all programming languages, but in the case of ABAP
has not been given sufficient attention to date. Within this context, potential risks that
may arise within a company as a result of corrupt ABAP programs are:

o Statutory violations (e.g. infringement of German federal data protection laws if
the programming error leads to the theft of personal data)

. Non-compliance with compliance requirements (e.g. SOX or PCI/DSS)

o Cyber attacks aimed at carrying out industrial espionage, sabotage or extortion
° Backdoors, which enable extensive insider access to data

o Press reports if vulnerabilities or data theft become known

Custom developed ABAP code in particular, must not pose a risk to the confidentiality,
integrity and availability of business data.

As this is an extremely complex subject, we can only broach a few selected core
themes within the scope of this document. For broader queries, we refer to the
commensurate literature listed at the end of the section.

5.1 SECURITY ISSUES RELEVANT TO TESTING IN SAP STANDARD

Our recommendations are based primarily on a document published as a guide in
German by the German Federal Office for Information Security (BSI): the "Top 20
Security Risks in ABAP Applications’.*®

The document itself is based on a comprehensive statistical analysis of security
defects in custom ABAP development projects (for further details see the published
BSI document). The most frequent security defects were identified on the basis of
these statistics. These were complemented by a set of less frequent, but particularly
critical security risks. Allin all, this provides valuable support for all companies that
enter this sector and initially only wish to prescribe a limited number of rules.

45 https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Hilfsmittel/Extern/TOP-20 Sicherheitsrisiken-
in-ABAP-Anwendungen.pdf

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

38

http://help.sap.com/saphelp_nw70ehp2/helpdata/en/3a/c8263712c79958e10000009b38f936/frameset.htm
http://help.sap.com/abapdocu_750/de/abencheckpoint_abexa.htm
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Hilfsmittel/Extern/TOP-20_Sicherheitsrisiken-in-ABAP-Anwendungen.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Hilfsmittel/Extern/TOP-20_Sicherheitsrisiken-in-ABAP-Anwendungen.pdf

w
(&)
P4
<
-
o
=
o
(&)
(=]
4
<
>
|:
o
o
(&)
(7]
wn
o
<<
(2]
<<
1o

The following initially divides the risks into areas followed by the commensurate
recommendations.

5.1.1 AUTHORISATION CHECKS

Roles and authorisations are a key security topic in the SAP environment. It is there-
fore important to understand that ABAP uses a so-called explicit authorisation
model.* Principally, authorisation checks should be explicitly programmed in the
ABAP code to make sure that the checks are executed.

Security issues frequently arise because of the following:

J The developer forgets to program the authorisation check.

o The developer fails to check the transaction start authorisation when calling a
transaction.

o The developer fails to check business authorisations in RFC-capable function
modules.

o The developer fails to secure critical PAl events that can be triggered by the
direct input of function codes, although the corresponding Ul element was
deactivated during PBO.

o The developer uses the wrong authorisation object.

o The developer uses a proprietary authorisation check.

o The developer does not handle the return value of the check.

5.1.2 AUDITABILITY

In addition to using internal teams, more and more companies are also having their
custom developments tested by independent third parties. These either test how the
program behaves during runtime (dynamic tests) or the test is based on the analysis of

46 Although implicit authorisation can be provided via S_TCODE in many cases, a plethora of gaps exist [external access via RFC or
services, branching off to other programs, various display and change modes within a program)

the source code (static tests). Two things must be guaranteed for a program to be
testable: it must be fully executable and all of its source code must be readable.

Security issues can arise in the following cases:
o The developer writes code that behaves differently on different systems, which
can hamper dynamic testing of potentially dangerous functionality on a quality

assurance system.

o The developer writes code that behaves differently on different clients, which can
likewise hamper dynamic testing on a quality assurance system.

o The developer hides code and consequently prevents analysis of the source code.

Whereas hidden code is fairly rare, hard-coded testing of clients or system IDs occurs
with a likelihood of more than 70% per system.

5.1.3 DATA PRIVACY

The primary purpose of SAP systems is the management of business data. These
include business secrets, personal data and financial data. The protection of such data
is of fundamental importance to a company, not least as a result of statutory require-
ments. As a consequence, custom written code too must guarantee that such data
cannot be extracted from the system without authorisation.

Security issues can arise in the following cases:

o Custom code programs display sensitive data without a sufficient authorisation
check, e.g. on SAP GUl or in HTML pages.

o Custom code programs export sensitive data without a sufficient authorisation
check.

o Custom code programs transfer sensitive data without a sufficient authorisation
check.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

w
(&)
P4
<
-
o
=
o
(&)
(=]
4
<
>
|:
o
o
(&)
(7]
wn
o
<<
(2]
<<
1o

5.1.4 INJECTION VULNERABILITIES

ABAP source code frequently uses dynamic statements, structures and identifiers that
are assembled from user input. If no input validation/output encoding exists to prevent
control characters in the input from changing dynamic command semantics, then the
dynamic command can be maliciously manipulated at runtime.

Security issues can arise in the following cases:

o The developer combines input with dynamic ABAP commands or risky com-
mands; for example execution of operating system commands or native SQL.

o The developer carries out inadequate input validation.

o The developer overlooks output encoding to avoid the harmful effects of control
characters in input.

Some injection vulnerabilities occur frequently within custom coding. Accordingly, for
example, statistically each customer system has 294 directory traversal vulnerabilities;
albeit they only cause limited damage. But there are also injection vulnerabilities,
which when exploited can grant an attacker complete access to the entire SAP system.
Statistically, 16 of these severe vulnerabilities exist per SAP system.

5.1.5 STANDARD PROTECTION

SAP standard delivers various security mechanisms that protect SAP systems against

attacks. These security mechanisms include client separation, logging and authorisa-

tion management. Companies consequently trust in these mechanisms when they have
securely configured their systems.

Custom development projects must therefore avoid undermining the functionality of
these mechanisms.

Security issues can arise, for example, in the following cases:

J The developer bypasses client separation.

o The developer deactivates database logging.

o Custom programs change business data without creating change documents.

Errors in this area are critical because they can potentially invalidate comprehensive
security measures within the company.

5.2 SECURITY RECOMMENDATIONS

It takes many years of experience to write truly secure software and even then specialists
may overlook something. Within this guideline, we focus our recommendations on a
selected list that can in many cases at least significantly reduce the risk of a success-
ful attack.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

40

5. ABAP SECURITY AND COMPLIANCE

5.2.1 SEVEN UNIVERSAL RULES FOR SECURE ABAP PROGRAMMING

| B

We recommend observing the following rules when pro-
gramming with ABAP:

Restrict the number of users that can execute any
given business logic to the necessary minimum by
means of authority checks.

In case a program has security vulnerabilities,
then at least the number of potential attackers is
reduced to the minimum.

If a check is relevant, never assume that this check
has already been carried out elsewhere.

If specific checks are required to secure program
logic, carry these out.
Avoid generic programming.

The more generic a program logic is, the greater
the probability of an attacker finding a way to
maliciously manipulate it.

Do not bypass any SAP standard security mecha-
nisms.

If SAP offers or prescribes a method for a partic-
ular functionality that is relevant to security, use
it and do not try and write a 'simpler” alternative.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

Check the validity of all input parameter values.

Injection attacks become specifically more
difficult if the range of input values is as limited
as possible. When processing a phone number,
for example, only allow digits to be used and
necessary special characters such as

Use the shortest possible variable types for input
parameters.

Even where validity checks are insufficient,
attacks are still considerably more difficult if the
attacker only has a few characters available.

Where possible, only use central library functions for
security checks. Never write your own.

Creating functions that execute security checks is
a complex matter and therefore open to errors.
Creation and maintenance of such functions
should be carried out by a centralised team
within the company. This avoids potential errors
and simplifies any subsequent rectifications.

L
(&)
=z
=l
-
o
=
o
(&]
(=]
=z
<
>
=
o
s
O
L
wn
o
<<
m
<
1)

5.2.2 THE MOST CRITICAL AND FREQUENT RISKS IN ABAP

Focus on preventing the following frequent and critical
risks when programming. This way you assure a sound
basic security level in your custom code.

|

The most critical ABAP risks and most important recommendations can be found in
the German Federal Office for Information Security (BSI) guide ‘Top 20 security risks in
ABAP applications’.

A more compact list of critical risks is provided by the BIZEC APP/11 standard. However,
the descriptions are not as comprehensive as in the BSI guide.

The following is a list of SAP messages that contain countermeasures for some of the
aforementioned problems.

SAP Note ‘ Schwachstelle

1520356 SQL injection
887168, 944279, 822881 Cross-site scripting
1497003 Directory traversal

SAP Notes that specify countermeasures

Naturally, we recommend that SAP security notes are checked and applied sooner
rather later. Albeit these do only solve security issues in SAP standard source code.
Regular checking of custom developments is therefore also imperative.

5.3 ABAP COMPLIANCE PROBLEMS

The subject of application security was rarely linked to compliance in the past, but is
specifically relevant for auditing.*’

Most companies have an internal control system (ICS] that counteracts compliance
risks. This is specified, for example, in the internationally recognised reference models
COSO & COBIT. Within a typical ICS structure, IT General Controls (ITGC) are a prereq-
uisite for achieving all ICS objectives within an IT dominated environment.

A fundamental component of ITGC is change management, which in turn encompasses
custom development. Any security defects in custom-written ABAP source code
consequently infringe IT General Controls. So if change management and /or cus-
tom-written ABAP code is insufficiently covered in the ICS, then all the other measures
will likewise become inadequate as they rely on a functioning change management
system. This effectively results in a breach of compliance.

ICS structure within ERP environment

Change management

ABAP

Business process risks
Completeness
Correctness
Separation of duties

Rights
Traceability
Data protection

Figure 1: ICS risks resulting from insecure ABAP source code

47 For further information see: Maxim Chuprunov, Handbuch SAP-Revision, SAP Press 2011

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

42

https://launchpad.support.sap.com/%23/notes/1520356
https://launchpad.support.sap.com/%23/notes/887168
https://launchpad.support.sap.com/%23/notes/944279
https://launchpad.support.sap.com/%23/notes/822881
https://launchpad.support.sap.com/%23/notes/1497003

w
(&)
P4
<
-
o
=
o
(&)
(=]
4
<
>
|:
o
o
(&)
(7]
wn
o
<<
(2]
<<
1o

In essence, this means that security defects in ABAP source code not only have a

potential impact on compliance standards, but could also infringe statutory requirements.

All the security risks illustrated in the German Federal Office for Information Security
guide ‘Top 20 security risks in ABAP applications’ are therefore also of relevance to
compliance.

5.4 TESTING TOOLS

So-called static code analysis tools are particularly suitable for carrying out ABAP
security checks. SAP has also expanded the Code Inspector/ATC with more complex
security checks in the form of the SAP NetWeaver Application Server add-on for code

vulnerability analysis, which is available under licence.

In addition, there are also a number of other commercial providers. The following
features of such tools are of interest:

o Analysis also of SAP standard source code and third-party code, either in its
entirety or limited to functions called by the customer code.

o Continuous monitoring, enabled through extremely fast scan speeds.

o Global data and control flow analysis, as these are fundamental to most security
checks.

o Comprehensive description of the respective problem with proposed solutions.
o Adequate test coverage:
. ‘APP/11" standard from BIZEC

o ‘Top 20 security risks in ABAP applications’ published in German by the
German Federal Office for Information Security

Effective integration of external tools into the development environment (SE80, Eclipse)
and development process (ChaRM, TMS) furthers the acceptance and use of such.

ADDITIONAL SOURCES

1.

Andreas Wiegenstein, Markus Schumacher, Sebastian Schinzel, Frederik
Weidemann, Sichere ABAP-Programmierung, SAP Press 2009

Maxim Chuprunov, Handbuch SAP-Revision, SAP Press 2011

BIZEC - The Business Application Security Initiative

German Federal Office for Information Security quide (in German) - Top 20

security risks in ABAP applications from 16.10.2014

The Business Code Quality Benchmark 2016

PCl/ DSS (Payment Card Industry Data Security Standard)

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

43

http://bizec.org/
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Hilfsmittel/Extern/TOP-20_Sicherheitsrisiken-in-ABAP-Anwendungen.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Grundschutz/Hilfsmittel/Extern/TOP-20_Sicherheitsrisiken-in-ABAP-Anwendungen.pdf
https://info.virtualforge.com/en/business_code_quality_benchmark_2016
https://www.pcisecuritystandards.org/document_library?category=pcidss&document=pci_dss

4
=
-
<
iy
=z
o1]
=
o
(8}
(=}
o
<

6 DOCUMENTATION

In many cases software documentation is as important as the development itself. A
lack of or limited documentation can cause severe complications at the very latest
upon further development or following a developer change. This section describes the
different options for documenting development within an SAP system.

Itis important to use the level of documentation which is appropriate for the task at
hand. Unfortunately, you often encounter just two extremes: either extremely compre-
hensive or no documentation. Comprehensive documentation, however, is often found
to be lacking from a contextual perspective due to the extensive redundant/duplicate
information it contains and the fact that it is not kept up to date. Also, when official
requirements pertaining to documentation are too strict or abstract, the documenta-
tion in question is simply not created in some cases.

Documentation should be created during development, but at the very latest prior to go

live or deployment. If the documentation is not ready, there should be no go live. Other-
wise this usually results in additional cost or ultimately in missing documentation.

6.1 DOCUMENTATION INDEPENDENT OF DEVELOPMENT OBJECTS

In addition to detailing the many development objects that perform individual and very
specific functionalities within the ABAP system, there is also the need to document the
major relationships within a module and across modules. In this respect, questions
such as the following need to be answered:

o What dependencies exist between modules?

o What applications are used with which business processes?

o Which background jobs run in a day/month/year and which development objects
are impacted?

In our opinion there is no suitable repository available within the SAP development
environment which provides answers to these questions and which also works well
with integrated graphics. Because of this, we recommend using other options for the
documentation of these cross-module relationships. Examples include:

o SAP Solution Manager
e Internal (product) wikis

o Documents in well-maintained public directories (storage portals, SharePoint,
files sharing ...)

Experience tells us that the primary challenge is a question of discipline. This challenge
cannot be solved with a tool - it is up to the development team and its management.

Templates such as arc4? are available for the documentation of the system architec-
ture, including design decisions. These can prevent essential aspects of the documen-
tation being forgotten and accelerate - when using a template for numerous projects -
the search for specific information. Establishing templates also facilitates the creation
of documentation parallel to development and compliance with an appropriate level of
abstraction.

Document templates such as arc42 do not have to be completely filled in. Instead, the
relevant parts are identified and the rest gets deleted dependent on the type and scope
of the development project in question.

Furthermore, an out-of-date document can be misleading. As a consequence, all
documents should display an update status and version number so that the latest
version can be identified.

Within an SAP system landscape, SAP Solution Manager provides project documenta-
tion options. The following links provide more detailed information.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

44

ADDITIONAL SOURCES As Workbench documentation is also linked to the transport system, it is available in
all the individual systems on the system landscape. Moreover, this documentation can

1. SAP Solution Manager 7.1 documentation be viewed by all users and is automatically integrated into the user interface for ABAP
system reports. An additional benefit is that the documentation can be maintained in
= 2. SCN blog ‘Business process documentation with SAP Solution Manager 7.1° multiple languages.
=
E 3. arc4? template for architecture documentation ABAP Doc comments can be used in the source code on SAP systems with SAP_BASIS
; >=7.40. This can be used as an alternative to documentation with ABAP Workbench.
3 4. Stefan Zorner: Softwarearchitekturen dokumentieren und kommunizieren. However, the full functional scope of ABAP Doc comments can only be currently
= Carl Hanser Verlag GmbH Co KG, 2015. ISBN 9783446429246 exploited using ABAP Development Tools for Eclipse. When Core Data Services are
< used to define DDIC objects, considerably more development objects can be documented

in the source code and external documentation is no longer required.

6.2 DOCUMENTATION OF DEVELOPMENT OBJECTS From SAP NetWeaver 7.50 onwards, class and interface ABAP Doc comments can be
exported as HTML files.*8.

In addition to methods, function modules and reports, where documentation can
directly be included, there are other development objects within the ABAP workbench
which do not have source code and which therefore have to be documented differently.

Examples are:
o DDIC objects

. Transactions

B

Our recommendation is to make use of the ABAP Work-
bench documentation options to document the tasks and
meaning of these objects in the SAP system independently
from the source code. Only the current status is to be
documented, if necessary complemented by short refer-
ences to the change documents (transport documents,
defect numbers).

|

48 http://scn.sap.com/community/abap/eclipse/blog/2015/10/21/new-abap-doc-features-with-netweaver-75

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -45-

http://help.sap.com/saphelp_sm71_sp05/helpdata/en/3d/d05893e6ba4dfab7c0d66de8d52420/frameset.htm
http://scn.sap.com/blogs/ben.schneider/2011/11/04/business-process-documentation-with-sap-solution-manager-71
http://www.arc42.de/template/index.html
http://scn.sap.com/community/abap/eclipse/blog/2015/10/21/new-abap-doc-features-with-netweaver-75

4
S
-
<
[y
=z
o1]
=
o
(8}
(=}
o
o

6.3 DOCUMENTATION IN THE SOURCE CODE

6.3.1 DOCUMENTATION LANGUAGE

-

All program comments should be in English.

.

Today, development teams collaborate primarily on an international basis. Even if they
are currently developing purely in German, their project may well be distributed on an
international level at a later date. The costs incurred at that point due to coordination
problems or even subsequent translation will be disproportionate compared to the
perhaps greater effort of documentation in English.

Experience has also shown that the readability of source code and comments is enhanced
when comments are in English. This is because the ABAP statements are themselves
in English and have a sentence-like structure. Consequently, English documentation
means the source code reader does not have to constantly switch languages.

6.3.2 CHANGE DOCUMENTATION

From the point in time when a program goes live make sure that all program changes
are properly documented. An essential rule of thumb is that a full version history of all
changes and comprehensively commented code reduces the readability of the source
code. Despite this disadvantage, some developer teams consciously document all
source code changes in order to simplify troubleshooting in productive or test systems
where no version history exists.

| B

Subsequent source code changes - except header com-
ments - should only be documented directly within the
source code in exceptional cases.

|

6.3.3 PROGRAM HEADER

Program changes can, for example, be documented in the program header with the
name or initials of the developer, the date or month, the change document number
(change document, incident ticket ...] and an abbreviated description of the change.

*/ Change Log

*/ VN/Date

*/ MZ/2012-08-06 CD4712
*/ MZ/2012-02-01 CD4711
*/ MM/2009-01-01 CD0815

ChangeDoc Description
Add MMSTA in Output
Import Material number

Added Field ABC in method signature and source
code in order to support quick search

This information makes it easier to understand which addition or error correction was
the reason for a change. These header comments also help recognise how often a
program has been changed, who most likely knows most about it and how long ago the
last change was made. This information is invaluable even before the next changes to a
program are planned or installed.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

46

>
=
=
[aa]
<<
[E)
(&)
o
o
[T
=z
L
(=]
P4
<<
>
=
=
o
w0
<
Ll
'8
~

6.3.4 SOURCE CODE COMMENTS

Source code comments help developers to understand the source code whenever this
is not achievable solely via proper source code design (modularisation, method and
variable name selection).

Comments are primarily meant for other developers, but can also serve the original
developer as time passes. The essential question here is why was code written and not
what code was written. Ultimately, the latter can be gathered from the source code
itself, while the underlying reason for why it was coded like this may often be unclear.
Developers themselves can significantly help in this respect by following the principle
‘as few comments as possible, but as many comments as necessary’.

Comments starting with an asterix should only be used in program headers or for the
temporary commenting out of old source code.

SAP recommends using inline comments for all other comments. These should be
placed before the source code that is being documented and indented the same as the
commented on line(s) in the source code. Pretty Printer correctly executes the latter
(only] for inline comments.

ADDITIONAL SOURCES

1. Horst Keller, Wolf Hagen Thimmel: ABAP-Programmierrichtlinien. SAP Press,
2009. ISBN 9783836212861

7 FEASIBILITY AND ENFORCEABILITY

This section describes how the best practices contained within these guidelines can be
implemented in practice. To this end, a distinction is made between feasibility and
enforceability of the guidelines.

The ‘Feasibility’ section explains the aspects companies wishing to introduce program-
ming guidelines should be aware of. A description is given of what a commensurate
process might look like, how it can be implemented and, above all, how it should be
maintained. The ‘Enforceability’ section provides details of how a company can check
the specifications of the process, including organisational aspects, methods of checking
and tools. The limits of enforceability are also examined.

The conclusion presents a number of practical tips gained by the authors while
working on various projects within the SAP development environment.

7.1 FEASIBILITY

Those wishing to successfully introduce programming guidelines within a company
must first convince the management to get behind the initiative, given that improving
source code quality requires initial investment in processes, tools and training of the
personnel involved. In particular, the management must feel confident that the
respective processes will save the company costs in the long-term.

7.1.1 MOTIVATION FOR A PROCESS

The following provides information on quality aspects addressed during implementation
of quality assurance processes and the respective advantages of such for companies:

Security

o Advantage: companies are able to prevent users gaining access or being able to
change critical data without authorisation.

o Quality deficiency risks: sabotage, industrial espionage, undesired press reports
resulting from data leaks, production system stoppages.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

47

>
=
=
[aa]
<<
[E)
(&)
o
o
[T
=z
L
(=]
P4
<<
>
=
=
o
(%2}
<
Ll
'8
~

Compliance
o Advantage: the company is able to effectively demonstrate at any time that
developed software meets the requirements of applicable compliance standards

and statutory regulations.

o Quality deficiency risks: audit failures, infringement of compliance requirements
or statutory regulations (e.g. data privacy).

Performance
o Advantage: the company is able to ensure optimum use of the available hardware,
in turn protecting previous investment in hardware. Employee satisfaction is also

increased as use of the application is more productive.

o Quality deficiency risks: reduced user acceptance and additional costs for faster
hardware to compensate for software deficiencies.

Robustness

o Advantage: the company safeguards continuous operation of business applica-
tions and avoids loss of productivity owing to system failures.

o Quality deficiency risks: reduced user acceptance and increased operating costs
due to loss of user productivity, fault analysis and technical maintenance.

Maintainability
o Advantage: the company is able to ensure sustainable, cost-efficient maintenance
of the application because the program structure is easy to understand and well

documented.

o Quality deficiency risks: high maintenance costs and generally increased applica-
tion susceptibility to errors.

Extensibility
o Advantage: high-quality source code and suitable documentation ensures that

developments can be extended and updated throughout the entire lifecycle at
reasonable expense.

o Quality deficiency risks: additional expense for analysis and subsequent docu-
mentation during extension of existing functionality, triggering of side effects
owing to incorrect interpretation of available source codes.

7.1.2 PROCESS DESIGN AND MAINTENANCE

A worthwhile step in terms of practical implementation of the process in question has
proved to be the formalised description of the process, including clear procedural
instructions and responsibilities. The precise details of the process will be unique to
the individual company concerned and so cannot be specified here; however, the
reference to its necessity is universal.

| B

Define and document the applicable process in a form that
is accessible to all. Also define how changes and im-
provements to the process should be performed and how
feedback and critique can be incorporated. Comprehen-

sively document all the verified rules, including sections
on background/motivation, bad examples, good examples,
notes on the procedure for remedying quality problems,
relevant literature and commensurate contact person(s)
within the company.

L]

Motivation

A best practice process during development helps to proactively and efficiently
improve software quality and therefore reduce costs within the company in the
long-term. The sooner an error is detected during development, the easier and more
cost-effectively it can be rectified. The fewer bugs in an application, the more its use
will meet the expectations of the company. Specifically, the application will run without
adverse side effects that impact negatively on the business.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

>
=
=
[aa]
<<
[E)
(&)
o
o
[T
=z
L
(=]
P4
<<
>
=
=
o
(%2}
<
Ll
'8
~

Which aspects are relevant for the process?
Internal development

Guidelines are needed for internal development as a reference for day-to-day work and
regular training on current risks.

External development

Clear quality specifications are needed for the external development bidding process.
Before approval, the commensurate requirements must also be checked.

| B

Process specifications should be monitored with appro-
priate tools to the greatest extent possible. A manual
verification process, including random sampling if neces-
sary, will need to be introduced for all specifications that
cannot be validated using tools. Suitable mechanisms in
this respect would be, for example, pair programming*’

or iterative code audits.®® Manual validation essentially
relates to software structuring/architecture, maintainabil-
ity and extensibility, which could be high cost drivers in the
case of long-lasting applications. As a result, in addition to
automated inspection, random manual iterative validation
is also recommended at an early stage. This process lends
itself particularly to larger projects as defective devel-
opments can be recognised in good time and minimised
through commensurate counter action.

L]

49 Cf. Dami Meyer blog ‘Pair Programming’
50 Cf. Wikipedia ‘Code Audit’

Each rule used for subsequent quality assurance must be defined in terms of how it
can be verified manually or with tool support. Where tool-supported inspection is not
possible, ensuring consistent compliance of the rule in practice will involve a signifi-
cant amount of organisational effort.

Formal code reviews require considerable effort, both in terms of implementation and
also preparation and review, including the control of corrections. As a result, they
should generally be limited to fewer non-tool-supported, verifiable aspects of critical
development objects. If, for example, the compliance of performance requirements has
high priority, commensurate code reviews should be restricted solely to development
objects with access to databases or extensive calculations.

7.2 ENFORCEABILITY
7.2.1 MANUAL TESTING

Many tests can be automated. However, a number of areas are not suitable for auto-
matic testing, such as documentation, architecture as well as numerous functional
requirements. Language is highly complex and consequently, as an example, the
content of documents and documentation needs to be tested manually. Only the human
eye can judge whether a text is meaningful, complete, comprehensible and correct. An
automatic test can only analyse the existence of the specified languages; however, an
automatic test of the non-functional aspects is nonetheless recommended.

For manual testing, a complete test by analysis of transport lists is preferable, affording
consideration to the various prevailing internal company guidelines. Depending on the
number of objects, a full or at least random test should be carried out, with the test
result sent to the person responsible for improvement or completion of the documents/
documentation.

Whether or not a process meets all specifications can only be ascertained by way of a
periodic manual check. If the specifications change or defects are discovered in the

process, it is to be adjusted accordingly or redefined if necessary.

In practice, a regularly scheduled cyclical review of the process has proved worthwhile.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

49

http://majcon.de/pair-programming/
https://en.wikipedia.org/wiki/Code_audit

>
=
=
[aa]
<<
[E)
(&)
o
o
[T
=z
L
(=]
P4
<<
>
=
=
o
(%2}
<
Ll
'8
~

When and how should testing be performed?

The concepts upon which the tests are based must be regularly checked for relevance
and conformity in terms of specifications. Relevance also needs to be ascertained by
means of upgrades to new releases (enhancement package). Consultation with
auditors tasked with auditing the company is also a worthwhile move with regard to the
specifications.

In the case of externally developed source code, these tests must be performed prior
to acceptance.

With regard to the acceptance of tests or in case of complaints within the course of
manual testing, it is useful, within the course of manual testing and in the scope of

developer and quality assurance checks (dual control principle), to have the manual
tests be conducted by other developers.

The same applies for (security) penetration and load tests. Given that penetration tests
are also a critical security issue, it may be necessary to consult external partners for
this purpose at regular intervals.

7.2.2 AUTOMATIC TESTING

Automatic tests using static code analysis (with Code Inspector/ATC or third-party
tools) quickly cover a large part of the necessary checks and examinations. Scheduled
as a background task, regular repetition without any extra effort is possible. As a
result, these regularly performed and uniform quality checks enable developers to
improve their programming style.

When and how should testing be performed?

Developers should receive feedback regarding the conformity of developments with
the respective guidelines at the earliest possible stage. This can be achieved by
scheduled daily checks in the development system, with the developer furnished with
the commensurate results.

Ensuring that the same checks and metrics are applied during testing by individual
developers, central QA units and for each transport approval is essential. If different
tools or settings are used for the checks, development team acceptance will decrease
significantly.

As a core level of protection, the checks should be integrated within the transport
management system and implemented upon transport request release at the latest
(ideally upon release of the individual transports). This ensures that no untested or
non-guideline-compliant developments are transported into other systems or the
production system itself.

As a ‘final security net’, a regular test run (full scan) should be carried out in the
production system. This can be planned as a background task to be performed during a
low-load period. The respective result is to be submitted to the responsible QA
representative, who is then able to arrange the additional steps with higher priority
(including correction if necessary).

Prior to introducing automatic testing, the procedure for dealing with old source code
should be defined. A useful step in this respect is to create a timetable detailing when
and how the new rules are to be applied to the respective old source code.

The internal costs and benefits for the company should first be considered in terms of
the systematic revision of old source code. Costs should also take into consideration
the test effort required by the pertinent specialist department and the risk of new errors.

B

In dealing with old source code, we recommend that check
results for old source code are documented at the start of
regular test runs and monitored at each further test run
to ensure no deterioration of test results has emerged in
comparison to the initial test.

|

SAP offers various tools for performing automatic testing; an overview of these tools is
provided in Section 2.9.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

50

>
=
=
[aa]
<<
[E)
(&)
o
o
[T
=z
L
(=]
P4
<<
>
=
=
o
(%2}
<
Ll
'8
~

7.3 PRACTICAL EXPERIENCE AND TIPS
7.3.1 SOURCE CODE QUALITY ASSURANCE

Safeguarding successful implementation of quality assurance necessarily requires a
carefully staged process for which a dual approach is advisable. Firstly, new source
code should be created ‘error-free’ and checked to ensure this is indeed the case. Only
when this process has been stabilised, should existing source code be progressively
incorporated within the checks. Otherwise the task becomes overwhelming for the
developer, in turn resulting in a sharp drop in motivation.

Where automatic code testing is not introduced from scratch with a new development,
prior clarification of how to deal with existing code needs to be undertaken. Even in the
case of new developments, changes to existing objects cannot be avoided and may lead
to problems in the event of transport checks. In such cases, clarification of the
responsibilities for development objects is beneficial, with the results then, for
example, subsequently documented in the commensurate package definition field.
Those responsible must decide if errors in existing source code need to be corrected
immediately or whether an exception is possible.

To avoid the problems described, an alternative concept is conceivable within which no
deterioration of old coding is accepted, meaning that no new findings should occur in
automatic quality testing. SAP is currently working on implementing such a concept for
the ATC. In the meantime, an SCN blog is available with details of customised imple-
mentation.”” The advantage is, for example, that new methods in existing classes are
also checked.

In many cases, working with standard on-board tools will generally suffice, such as the
ABAP test cockpit that can be extended with custom tests and therefore adapted to
individual needs.

An additional strategy for new developments involves incorporating quality require-
ments in the requirement analysis process and linking these directly to the object
being created. This enables a subdivision into requirement-specific quality criteria and
those driven by IT governance. While quality requirements subject to IT governance
(e.g. security criteria) are a mandatory obligation, the ABAP product manager is
responsible for evaluating and approving the exception of other criteria. Technically,
the concept can be realised by incorporating the product manager within the package
and providing he package or source code object it contains with manually entered
classification attributes from the Classification Toolset.*’These classification attributes
should be determined based on factors such as anticipated lifecycle, frequency of use,

51 http://scn.sap.com/community/abap/blog/2016/05/23/how-to-filter-atc-findings-to-detect-only-new-findings
52 SAP-Help-Search_,Classification Toolset”

criticality, extent etc. The result is a scenario which eases the burden on central quality
representatives and delegates partial responsibility to the development/project team.

B

Quality assurance and mandatory tests such as ATC/Code
Inspector tests upon transport release are an effective
means of ensuring quality assurance. Nonetheless, this
does create a certain level of inefficiency given that at this
stage any previously completed source code has to be
revised. A more practical approach is for developers to
deliver high quality source code from the outset. As an ex-
ample, this can occur through the application of clean code
criteria.®® Where a team essentially pursues development
on the basis of these criteria, the subsequent adaptation
effort will be reduced.

|

7.3.2 TIME AND BUDGET QUALITY ASSURANCE (QA)

To keep the time and effort required for QA activities to a minimum, developers must
be able to independently examine the source code for errors during its development.

If this is omitted, the developer must be notified of errors or opportunities for improve-
ment automatically. Daily inspections with an appropriate tool and distribution of the
results ensure that errors are detected early on, meaning the developer is still able to
remember activities from the previous day, which significantly simplifies trouble-
shooting. As a result, even developers who shy away from manual work or are under
time pressure nonetheless have an opportunity to fix their coding errors. Ultimately,
the later QA takes place, the higher the costs of debugging. This extra cost and effort
arise, for example, from additional transports after the original transport had already
been released.

53 See also http://clean-code-developer.de/

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

http://scn.sap.com/community/abap/blog/2016/05/23/how-to-filter-atc-findings-to-detect-only-new-findings
http://help.sap.com/search?%23query=classification%2Btoolset&startindex=1&filter=scm_a_site(scm_v_Site10)&filter=scm_a_language(scm_v_lang01)&filter=scm_a_solutionSuite(scm_v_ssuite12)&filter=scm_a_solution(scm_v_ss12_sol43)&filter=scm_a_release(7.5%2BSP0)&timeScope=all
http://clean-code-developer.de/

>
=
=
[aa]
<<
[E)
(&)
o
o
[T
=z
L
(=]
P4
<<
>
=
=
o
(%2}
<
Ll
'8
~

Itis therefore important to consider quality assurance when planning and estimating a
project, not only at the end, but during the course of the project and subsequently
across the entire software lifecycle.

Not be underestimated is the requisite training needed to communicate the necessity
of the process to developers.

Where third-party developers are employed, the programming guidelines and naming
conventions must be an element of the contract.

7.3.3 PROBLEMS

The introduction of source code QA gives rise to a series of issues that are addressed
in brief here.

One point of contention is the question of who is responsible for QA, creator or changer.

For new source code this is not a problem; however, for existing source code the
following issue repeatedly arises:

“Why should | check source code in which | have only changed one line?”
VS.
“Why should | check source code that | haven't touched for years?”

Both positions are naturally understandable; therefore, a clear decision must be taken
and implemented regarding the handling of existing source code based on other or no
conventions. If the creator is still available, the incorporation of this creator within QA
is recommended.

Also problematic is a scenario where a small change is made to an include program
within the scope of maintenance. An automatic quality check then finds quality errors
within the main program (possibly even in several main programs in the case of
multiple-use include programs). Depending on the environment, the respective
rectifications will require extensive additional testing of these main programs by the
pertinent specialist department.

B

A central authority should be created to respond to devel-
opers’ questions in the event of problems. In addition, a
process must also be in place to enable the release of
even faulty transports in emergencies. The absence of
such options will reduce acceptance of the measures im-
plemented. One approach is to install an approval process
that also helps facilitate the release or transport of faulty
source code. Most tools on the market (including SAP
Code Inspector and ABAP Test Cockpit) offer this possibility
as standard.

|

7.3.4 DECISION MAKING REGARDING MODIFICATIONS

The threshold for modifications should be set as high as possible. This is particularly
important if SAP enhancement packages are to be promptly implemented (see Section
8.4 re. SPAU problem). The starting point in this respect is the modification key. The
number of developers with authorisation to create a modification key must be kept to a
minimum as this enables modifications to be controlled and handled using change
requests and via a commensurate process. Given that SAP coding cannot be changed
through modification-free enhancements and that this reduces the potential for
problems with upgrades, modifications are essentially preferable.

The question of whether a modification is justifiable is an individual matter for the
respective company and must be consistently implemented. There is no general
answer to this question; in each particular case the decision needs to be based on
equivalent criteria that are defined and communicated in advance.

For alternatives to modifications see Section 8.4.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

>
=
=
[aa]
<<
[E)
(&)
o
o
[T
=z
L
(=]
P4
<<
>
=
=
o
(%2}
<
Ll
'8
~

B

If SAP coding requires enhancement or change, four
options are available: these being explicit and implicit
enhancements, modifications and copying the SAP object
into the customer’s namespace. The individual options
should be considered in the following order: explicit
enhancements prior to implicit enhancements, implicit
enhancements prior to modifications and modifications
ahead of copies. Copies are particularly critical given
that possible errors will also be copied, while the copied
source code will no longer be subject to SAP maintenance
through notes and updates.

|

7.3.5 PRACTICAL FIELD REPORT: COMGROUP GMBH

The following example regarding Comgroup GmbH, IT service provider to the Wiirth
Group, shows how programming guidelines and naming conventions can be imple-
mented and enforced within software development.

Comgroup GmbH began source code QA within the global development system of a
multistage development landscape. Code Inspector was employed to provide automated
support. Since the introduction of source code QA coincided with a new namespace,
only new namespace objects were checked at the start of the project and existing
source code was not considered. This simplified selection in Code Inspector given that
Code Inspector does not consider change or creation data. In addition, Code Inspector
performance and security checks were not initially activated in order to keep efforts
within a manageable scope.

Using this tool, developers are able to independently check their source code during
development. In addition, a nightly run was also scheduled to analyse all source code
being scanned, with commensurate emails sent to the respective developer in the
event of errors being established.

Email addresses missing from user masters initially caused problems because the
emails could not reach their recipient. Such emails are now sent to a central address,
thereby allowing incomplete data to be easily identified. In addition, development users
can no longer be created within the system without an email address.

The emails were not sent by an anonymous batch user, but rather from the email
address of the person responsible for QA in order to give the developer a straightfor-
ward option to ask questions. Initially this resulted in a lot of work, although the
number of questions decreased during the course of the project. Ultimately this was
achieved through training that enabled developers to correct errors more efficiently or
avoid them in the first place in the course of development.

The development language in the development landscape is English, checked by an
additional job and with errors reported to the developer. SAP standard does not offer
the option of setting a default language for a development object. Therefore, the only
options were to either implement the commensurate test logic at an appropriate place
using a modification, or live with the fact that objects were created in the wrong
language and would subsequently need to be changed.

Moreover, when implementing objects naming conventions were also checked using a
modification to ensure that they could only be named according to the conventions.

To perform custom checks at transport release (e.g. custom naming conventions/
German and English translation as a minimum) the business add-in CTS_REQUEST_
CHECK was implemented and the CHECK_BEFORE_RELEASE method employed.

Once the process had stabilised within the global development system, it was rolled
out to the subsequent development systems and namespaces. Existing source code
has not yet been checked. In addition, the use of an external tool to simplify quality
assurance is also planned.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

53

(=]
4
<
L
o
)
[
(&
o)
o
[
wn
<
o
L
=z
©

LIFECYCLE MANAGEMENT

8 INFRASTRUCTURE AND LIFECYCLE MANAGEMENT

This section focuses on infrastructure and explores the lifecycle of a software compo-
nent. In addition to methodical recommendations and tools for software development
within the SAP system, these are principal framework conditions for delivering
successful performance.

8.1 INFRASTRUCTURE

As arule, an SAP system landscape has a multi-level structure. Depending on the
release strategy, two practical alternatives should be considered. Where small
changes are regularly transported at frequent intervals in the shape of short-term
releases, a classic three-system landscape is preferable. By contrast, in the case of a
release strategy with long release cycles, a five or six-system landscape would be
beneficial. The individual systems and their relevance are presented below.

8.1.1 CLASSIC THREE-SYSTEM LANDSCAPE
8.1.1.1 Development

The development system is used to implement developments, change customising data
and perform initial developer tests. Given the instability created through ongoing
developments and customising activities, third-party testing (pertinent specialist
department) is not practical for this system.

Developers and module administrators have extensive authorisations within the
development system. Generally there is very little test data.

8.1.1.2 Quality assurance

Customising and development is essentially prohibited within the quality assurance
system (system settings ‘not modifiable’). Customising and workbench objects are
exclusively imported via transports.®* Imports to production are effectively carried out
via the quality assurance system to ensure a system environment is compatible with
production.

The quality assurance system should be regularly copied from the production system,
for example, for more comprehensive validation actions and so ensure compliance with
the operative (data) environment. Within the quality assurance system, test plans are
processed following changes and new developments.

Developers and module administrators have extensive authorisations within the quality
assurance system. Restrictions need to be applied individually, for example, for
particularly sensitive data (HR etc.). Data privacy is to be considered in relation to
personal data.®® Use of additional users with identical production authorisations is
recommended in order to also test the issue of authorisation.

8.1.1.3 Production

A prohibition on customising and development also applies within the production
system. Customising and workbench objects are exclusively imported into this system
via transport request.

Developers and module administrators have limited authorisations within the produc-
tion system. Urgent changes to tables (&SAP_EDIT] are to be documented with the
date, time and reason for such. The use of a commensurate tool is also recommended
to ensure report standardisation. The procedure for emergency users with more
extensive authorisations must be determined both technically and organisationally.

8.1.2 FIVE- AND SIX-SYSTEM LANDSCAPES
This landscape is practical if long release cycles are used. The development of new

releases occurs within the development system, with maintenance and error process-
ing in relation to the production release carried out in two separate systems.

8.1.2.1 Development

In this landscape, the development system is in the same role like in the three-system
landscape.

54 Copies can also be transported within the three-system landscape, as described in Section 8.1.4 ‘Best Practice’

55 Cf. DSAG Data Protection Guidelines

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

https://www.dsag.de/fileadmin/media/Leitfaeden/080909_Datenschutz-Leitfaden.pdf

(=]
4
<
L
o
)
[
(&
o)
o
[
wn
<
o
L
=z
©

LIFECYCLE MANAGEMENT

8.1.2.2 Test

An absolute prohibition on customising and development applies for the test system.
Customising and workbench objects are exclusively imported through transport
requests.

Generally, imports to this system are performed through the transport of copies (see
Section 8.1.4 ‘Best Practice’). Accordingly, this ensures that development objects
processed within the development system remain locked throughout the entire
release period. The original transport request is first released at go-Llive. The trans-
port of copies allows developments and customising to be tested up front within the
test system. As a result, numerous developments and customising within the develop-
ment system can be bundled to minimise the number of release transports for quality
assurance and the production system. Should this advantage be deemed unnecessary,
the test system can be dispensed with.

The test system is copied from the production system where necessary. Consequently,
this allows comprehensive testing to be carried out in advance.

Developers and module administrators have extensive authorisations within the test
system. Restrictions must be applied individually, for example, for particularly

sensitive data (HR etc.). However, the deployment of test users with production-related
authorisations is also recommended.

8.1.2.3 Quality assurance

The quality assurance system of this landscape corresponds with that of the
three-system landscape.

Provision to the quality assurance system is facilitated:
o in a six-system landscape solely with release transports,

o in a five-system landscape through normal ongoing transport requests.

8.1.2.4 Maintenance

Within the maintenance system, maintenance and administration of the production
software is carried out over the period the new release is developed within the devel-
opment system. All corrections in the new release from the maintenance system must
be incorporated.

After a Go-Live, meaning the transport of a release to the production, the maintenance
system has to become consistent again with the production system. This can be

achieved in a number of ways, one typical approach being to import the release
transports into the maintenance system.

8.1.2.5 Consolidation

Changes from the maintenance system are tested in this system.

8.1.2.6 Production

In this landscape, the production system is commensurate with that of the three-sys-
tem landscape.

8.1.2.7 Schematic illustration of six-system landscape

Application

D Development
Test
Quality assurance

Production

P

Maintenance

O < v o -

Consolidation

Figure 2: Schematic illustration of six-system landscape

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

55

(=]
4
<
L
o
)
[
(&
o)
o
[
wn
<
o
L
=z
©

LIFECYCLE MANAGEMENT

8.1.3 SANDBOX

The sandbox is purely a testing and ‘exploratory system’. There are no authorisation
restrictions in the sandbox or with regard to customising and workbench develop-
ments. No transports are carried out from the sandbox to other systems, meaning that
complex changes can be tested prior to their implementation within the development
system. As a result, this avoids having to roll back complex developments within the
development environment if, for example, a new development is subsequently discard-
ed. To clean up prototype developments within the sandbox system, it should be
regularly refreshed, for example, as a copy from the production system.

8.1.4 TRANSPORT SYSTEM
The transport route is defined as follows:
o Three-system landscape:

Development = Quality assurance system — Production
(possibly with transport of copies after quality assurance system)

o Five-/six-system landscape:
Development - Test (in this case, always with transport of copies)

Development = Test = Quality assurance system — Production
(release transports)

Maintenance = Consolidation = Production (maintenance/
administration during release development]

The sandbox should be isolated from the transport route. Imports from the develop-
ment system to the sandbox occur solely following individual request.

Transports within the development system are generally released by the developer. If
multiple developers are working on transport tasks within a project, one developerin
the role of coordinator will release the transport request. Automatic quality checks, for
example with the ABAP Test Cockpit (see Section 2.9) or the Code Inspector (see
Section 7.2.2 ‘Automatic checks’], can be configured to prevent transport release and
require subsequent remedial action or special approval.

Imports into the test and/or quality assurance systems must be organised based on
the system landscape. Frequently, imports into these systems are performed automat-
ically within a cycle in order to alleviate employee workload in the basis department
and reduce waiting times for developers and testers.

Where multiple developers make changes to a development object, problems can
occur in certain situations if the transport requests are not transported into production
systems in the right sequence or if objects from other transport requests are missing.

To avoid problems with the import sequence of released
transports relating to the same development object, the
transport of copies should be used for delivery to test and
quality assurance systems. The modified development
objects remain blocked by the actual transport request

within the development system until the point of going live.
The system will notify a developer if another developer is
already working on the object so that they can coordinate
their actions accordingly. Following completion of the
project or change, only the actual transport request will
be transported into the production system via the quality
assurance system.

The Change and Request Management system (ChaRM) contained within the SAP
Solution Manager works with this process internally.

As a general rule, imports into the production system should be carried out by internal
employees with commensurate authority; Prerequisite is the formal release (within the
meaning of a documented decision, see Section 8.2 ‘Change Management’). Use of a
suitable tool (e.g. Solution Manager ChaRM] is also recommended in this case to
ensure standardisation/formalisation.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

(=]
4
<
L
o
)
[
(&
o)
o
[
wn
<
o
L
=z
©

LIFECYCLE MANAGEMENT

8.1.5 SAFEGUARDING CONSISTENCY OF NEW DEVELOPMENTS AND EXTENSIONS

If projects are run in parallel a risk of overlapping occurs. This may result in overlap-
ping use of objects that are not (yet) available in the target system, ultimately leading
to import errors. Consequently, there is an obligation to check the use of objects
created by (non-SAP) third parties.

New developments and extensions must be encapsulated in suitable packages or
transport requests. It is recommended that transport requests for a given project be
limited to a single transport request for workbench, customising and authorisation
roles respectively. ‘Preliminary transports’ should only be permitted using the
transport of copies.

Final release and transport only first occurs at the end of the project. All project
participants only apply tasks relating to a given transport request within a project.
There should be no ‘personal’ transport requests for individual project members.

Generally, an import will only be performed following formal release (see change
process) by a process owner, quality assurance or similar. The sequence of performance
and participating areas must be specifically determined in relation to the company.

8.1.6 ROLL BACK OF NEW DEVELOPMENTS

Should developments be created in the development system that prove to be unusable
or inaccessible, a number of options are available for remedy:

o Complete roll-back of the changes, insofar as the changes are not also required
in later releases.

o Deactivation of the development to prevent the source code running in the
production system. This can be achieved using various strategies:

o Commenting out the source code (in the case of small code changes).

J Incorporation of a switch within the source code that prevents the unre-
leased source code from running. The nature of the switch will depend on
the specific circumstances.

o Complete removal or roll back of customising.

Where TMS Quality Assurance (QAJ% is used as the approval workflow, the following
applies:

o Rejection by the quality manager merely prohibits the transport of functionality
into the production system in a useable or accessible form. The source code can
be supplied, but should not be run under any circumstances.

o A process must be in place to ensure that the rejected development is transferred
to all relevant systems in an inaccessible form. As stated above, this can be achieved
through complete roll back or deactivation via switches in the source code.

o The responsible developer must be advised of the rejected transports. The
obligation to forward commensurate information lies with the quality manager.

A small Z-program is available in the SCN regarding rolling back ‘abandoned’ develop-
ments (Report for Rolling Back Abandoned Developments])

56 https://help.sap.com/saphelp nw70/helpdata/de/9c/ab44céc57111d2b438006094b9eabs/content.htm

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

http://scn.sap.com/community/abap/blog/2016/06/27/report-for-decommissioningremoving-obsolete-developments#
https://help.sap.com/saphelp_nw70/helpdata/de/9c/a544c6c57111d2b438006094b9ea64/content.htm

8.2 CHANGE MANAGEMENT Example of a change control form (CC):

H H H . cc ber: Date:
Creating a maintainable and controllable SAP system landscape requires a formal namner —— ate
= = change process for each system modification. The basic procedure also similarly CC titte:
<< applies for changes to SAP standard and customer developments. o be completed by IT
=3
5 = The framework for introduction of a change and release management system is the :ha"‘-‘f’eq”es‘ Contcent
. equester: ost centre:
= <zt Information Technology Infrastructure Library (ITIL).%” This is a reference guide that E—
Hw lists the comprehensive and generally accepted best practices. Department:
|
< O
o > . i . . Date required: Priority:
= In this section we present a specific example that can be adapted to a particular company - T wimedumingh
= .
. = or sector accordingly. Type of change:
© g y Change/authorisation
. . i . . Change:
Fundamentally, we recommend considering the following aspects when introducing a {summary)

change control process (also: change request process):

Append a more detailed description!

L4 Functional requirement Process owner: Date/signature:
. . Process owner Date/signature:
o Motivation external:
e Evaluation (estimation of cost/effort) Processing
Application/module: Processor:
L4 Ap prova L Authorised Date/signature:
SAP coordination:
. Authorised Date/signature:
o Release of the change to the production system SAP management
Remarks:

The approval/release group (process owner, QA ...) depends on the nature of the

change (area affected, application affected, possibly also effort involved).

Use of a suitable tool is strongly recommended (e.g. Solution Manager ChaRM). Release/Transfer to production

Checked b

However: a paper-based solution is better than no solution! requester. PRAE——
Checked by
SAP coordination: Date/signature:
Checked by
IT management: Date/signature:
Transport/transfer
by processor: Date/signature:

Figure 3: Change control form (CC)

57 see https://de.wikipedia.org/wiki/IT Infrastructure Library

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -58-

https://de.wikipedia.org/wiki/IT_Infrastructure_Library

(=]
4
<
L
o
)
[
(&
o)
o
[
wn
<
o
L
=z
©

LIFECYCLE MANAGEMENT

The illustrated CC form includes, for example, the essential data that must accompany
a system change process.

Basic process and roles:

The requester fills in the ‘Requesting department’ part and obtains the signature
of the process owner and/or external process owner.

The process owner is usually the senior manager of the requester and is respon-
sible for a certain part of the data and use of certain SAP software elements e.g.
the purchasing manager is responsible for SAP purchasing data and programs.

The external process owner should be included whenever a change affects data
or programs that lie outside the process owner’s responsibility.

Example: the purchaser requires authorisation from asset accounting; in this
case the process owner with responsibility for this part of the system must also
furnish approval (e.g. asset accounting manager).

A detailed description of the change is to be attached as an appendix to the CC in
all cases; CCs without a detailed description will be rejected. The requester
passes the CC on to IT.

The SAP coordinator is the person who coordinates the respective activities
relating to SAP or a part of SAP and allocates tasks to the individual module
administrators. Depending on the size of the organisation, this responsibility can
also be undertaken by a group of individuals or a department manager within IT.
The respective person enters the application or module on the form and allocates
the CC to a processor. They may also reject the CC on the basis of formal errors
(e.g. absent or insufficient description, lack of process owner or external process
owner signatures). The SAP coordinator will issue a specific CC number and CC
title; this CC number can also be provided by a project management tool.

The IT manager or SAP manager approves/rejects/defers the change (with
suitable justification) accordingly, following approval by the coordinator.

o Where approvalis issued, the processor receives the CC for further processing;
any change intended for further transport may be carried out by a processor sole-
ly on the basis of a fully approved CC.

o After completion, the processor requires the requester to check the change.

J Where implementation corresponds with the respective requirements, the
requester releases the change for transport; the requester confirms correct
implementation by way of signature; a transport may only be carried out after
release by the requester.

. The SAP coordinator and IT manager confirm correct implementation of the
change. Correct implementation should be verified using a check list, supported
by testing tools (see following best practice recommendations). A transport
request may not be imported into the production system without prior release by
the SAP coordinator and the IT manager.

. The processor transfers the transport to the production system and forwards the
CC form to the SAP coordinator and IT manager.

The approval and release process and therefore also the content of the form may vary
greatly depending on the specific sector. In pharmaceutical companies, for example,
QA is essentially incorporated within the CC process. Moreover, all companies will
generally require additional implementation approval in the event of certain (estimat-
ed) project cost threshold being exceeded. As such, the approval structure also
depends on the respective company organisation.

Consequently, the form provided merely contains the minimum requirements of a CC
without taking into account any requirements in terms of sector or organisation.

Additional approval and/or release steps or additional fields referring to other docu-
ments (e.qg. validation documents) should be individually supplemented as required and
the process expanded accordingly.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

8.3 SOFTWARE MAINTAINABILITY

| B

Software maintainability is a criterion that applies in software development and
indicates the effort and cost required to carry out changes within an overall system

i 58
Check list prior to release of a workbench transport by environment.

the SAP coordinator and IT manager for transport into the From a technical perspective, a modular construction is required (see Section 2.3

production system: ‘Readability and modularisation’). Reusable source codes need to be organised in global
Have automatic source code tests been performed? classes or function modules. Package interfaces can be used to identify reusable objects.
Has the code inspector and ATC or extended program
check been carried out for all transport request In system environments consisting of different development and production systems

programs? The ensuing results list should not contain (transport streams) the basic principle applied is that an identical object name (trans-
any errors or warnings, however information reports action code, program, include, table) will also have identical coding and identical object

8. INFRASTRUCTURE AND
LIFECYCLE MANAGEMENT

. . . attributes.
are permitted. Optimally, tests are carried out auto-
matically for every transport release (see Section 2.9]. All developments, changes and bug fixes are to be documented accordingly (Cf. Section 6
Third-party tools? If additional test tools for areas Documentation’].

such as security, performance, etc. exist, have these
been executed?

Manual testing as necessary, possibly random sampling. 8.4 ADAPTATION OF SAP FUNCTIONALITY

Manual Prel'mmary work or rewor.kmg? Verify wheth- Various options are available for adapting the functionality of an SAP system to

er there is a fully executed check list for manual individual requirements, each having both advantages and disadvantages:
preliminary work and reworking of transports.

. Enhancements (user exits, customer exits, BTE, BAdls, enhancement points and

: . :
Multiple languages? If the transport request contains sections, CDS extensions]

translation-relevant objects, a check should be
carried out into whether translations are provided as e Implicit enhancements
per the translation strategy.

Transport dependencies? A check of transport depen- * Modification

dencies must be carried out. e Z-copy, copy in customer namespace

System-internal documentation? See Section 6.2 Use of this option is expressly not recommended!

J User exits, customer exits, BTEs and BAdIs are all usable techniques that can be
employed without problem. They should therefore be used when available in suitable
positions and with suitable interfaces.

ADDITIONAL SOURCES The various techniques are briefly described in the following.

1. Mathias Friedrich, Torsten Sternberg, Change Request Management mit dem SAP

Solution Manager, SAP Press, 2009 58 Wikipedia ‘Maintainability’

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -60-

https://de.wikipedia.org/wiki/Wartbarkeit

(=]
4
<
L
o
)
[
(&
o)
o
[
wn
<
o
L
=z
©

LIFECYCLE MANAGEMENT

User exits

User exits are subroutines contained in includes in the SAP namespace that are
only delivered once by SAP and so can be ‘modified” without problem.

Customer exits

Customer exits are function modules that can be activated and deactivated; they
can be implemented by the customer in order to enhance the standard functionality.

Business transaction events (BTE)

In the Fl environment, BTEs provide an additional option for enhancement. BTEs
are comparable to customer exits, but are essentially restricted to the FI module

and provide a predefined interface to which the developer can add enhancements.

Further information is available in the SAP standard documentation.
Business add-ins (BAdI)

BAdls are used by SAP in an attempt to remedy the disadvantages of previous
enhancement technologies such as:

e access toall global variables (user exits)

e onlysingle usage (customer exits)

e nodynproenhancements (BTEs)

e nomenuenhancements (BTEs)

. no maintenance tools (BTEs)

Hence BAdls can be multiple-use and offer all enhancement types (program,

menu and dynpro exit). If multiple enhancement techniques are available for a
desired enhancement, the use of BAdls is recommended.

Enhancement framework

With the new enhancement framework SAP is attempting to remedy the disad-
vantages of previous enhancement technologies. The enhancement framework
includes:

o explicit enhancements (enhancement points and enhancement sections)

o ‘new’ BAdls (whereby implementation of the old BAdl technology can be
automatically migrated)

J implicit enhancements

Enhancement points

These enable source code to be included at fixed points. To this end:
J multiple active implementations are possible in parallel and

o all active implementations are executed.

Enhancement sections

These provide the option of replacing a defined section of a program with custom
source text. To this end:

o multiple active implementations are possible in parallel, however
J only one active implementation is executed;
o itis unclear which active implementation is executed.

Note: implementations of enhancement sections can be substituted by the
provision of SAP enhancement packages or the activation of business functions
through new active or newly activated implementations. In such cases it is very
difficult to identify substituted or no longer executed enhancement implementa-
tions. As such, a change in SAP standard may change the behaviour of the
enhancement. This increases the requisite test effort (TCO) significantly and
could easily cause disruption during an SAP release upgrade or EHP. Conse-
quently, the use of enhancement solutions should be examined very carefully.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

61

(=]
4
<
L
o
)
[
(&
o)
o
[
wn
<
o
L
=z
©

LIFECYCLE MANAGEMENT

ABAP CDS extensions

These enable modification-free enhancement of CDS views. The enhancement
facilitates the addition of view fields and associations and is subject to restric-
tions specified in the ABAP key word documentation for the respective NetWeaver
releases.”

If the desired result cannot be achieved with the previously stated enhancement
techniques, a number of other options are available, the use of which should be
considered on a case to case basis.

Implicit enhancements

Code can be added or the complete code (methods) substituted.at the start and at
the end of procedures.

There is a major difference between implicit and explicit enhancements: implicit
enhancements are similar to modifications with some of the same disadvantages.
Explicit enhancements are similar to BAdls.

If implicit enhancements are used SPAU_ENH should be executed as these
enhancements are not displayed in the regular SPAU transaction.

The decision as whether to use implicit enhancement options not only depends on
the implementation cost, but must also consider possible subsequent costs.

59

CDS View SAP NetWeaver 740

CDS View SAP NetWeaver 750

Modification

Basically, modification of source code supplied by SAP is problematic because:
modified development objects are not subject to SAP maintenance and therefore
need to be restored by the customer within the scope of SAP support ticket
processing.

modifications must be checked for compatibility with the SAP source code and
adjusted if necessary during each upgrade of the SAP system at the latest and, in
some cases, also during the installation of SAP notes or service packs.
Therefore modifications should only essentially be applied if:

o customising or personalisation cannot meet the requisite requirements and

o no suitable enhancement options are planned.

Within the change process, as an exclusive case modifications should be mapped
separately in the interests of traceability.

Copying into own namespace/Z namespace

Copying SAP standard source code into the customer namespace requires a great
deal of maintenance. Executing copies is not recommended. There is no automatic
process or manual provision regarding how to effect subsequent alignment (e.g.
following installation of support packages or notes) between the original and
Z-copy.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

62

http://help.sap.com/abapdocu_740/de/index.htm?file=abencds.htm
http://help.sap.com/abapdocu_750/de/index.htm?file=abencds.htm

8. INFRASTRUCTURE AND
LIFECYCLE MANAGEMENT

Priority should be afforded to the use of enhancement

options provided for by SAP (BAdls, user exits, cus-
tomer exits, BTEs, enhancement points or sections).

Generally, workbench modifications are only permitted

using the modification assistant!

In certain situations, the use of a Z-copy will involve
extremely high realisation and subsequent costs.

Moreover, further developments within SAP standard

bypass the Z-copy without consideration, in turn
generating costs for the adaptation or creation of a
new Z-copy. Problems may occur with the standard
includes applied following the importation of en-
hancement packages.

The decision regarding modification vs. Z-copy
vs. implicit enhancement not only depends on the
realisation cost, but is also determined by potential
subsequent costs.

8.5 AUDITABILITY OF APPLICATIONS
8.5.1 TEST PROCESS BASICS FOR THE CREATION OF SOFTWARE PRODUCTS

Application testing is a software quality assessment®® and improvement tool. Amongst
other things, such testing serves to check functional and non-functional product
requirements, reveal anomalies in terms of system resource use and ensure precise
orchestration within the scope of temporally dependent process steps. In this respect,
the earlier a defect is identified and can be remedied, the lower the resulting cost.

Error Correction costs

The correlation between debugging and respective subsequent costs is ably illustrated
in the elder, but nonetheless still basically valid study by Barry W. Boehm on the
‘relative cost of debugging the development cycle’ from 1981. According to Boehm, a
bug found in the maintenance or operational phase will be up to 100 times more
expensive to resolve than if it had been corrected in the analysis phase. Drawing on
Balzert®! the following table provides an example orientation aid and illustrates the
phases of the development cycle in which certain error frequencies are likely to occur
and the likelihood of the error being discovered.

Phase Analyse Implemen- System test Acceptance Mamtepance/
tation test operation
0,2 0,5 1 2 5 20

None of the options (modification/Z-copy/implicit Relative

enhancement) are purely advantageous or purely eXp_ense

disadvantageous. A check should be carried out in CNOO:F'ZZaL o e es e10 eos £100
each individual case to determine which technique tive costs '

offers the least disadvantages in the specific case. Errors

Centralised, formal and technical documentation intro- 55% 30% 15%

should be created for each type of enhancement, For duced

this purpose, suitable templates should be provided Forgsgs 5% 10% 40% 45%

and a duty to use them should exist. J

ADDITIONAL SOURCES

1. SAP Training BC425 and BC427

60 Cf. https://de.wikipedia.org/wiki/Softwarequalit%C3%A4t#QS-Schwerpunkt Softwaretest
61 Cf. Balzert, Software management, Spektrum 2008 p. 484 et seq

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -63-

https://de.wikipedia.org/wiki/Softwarequalit%C3%A4t#QS-Schwerpunkt_Softwaretest

(=]
4
<
L
o
)
[
(&
o)
o
[
wn
<
o
L
=z
©

LIFECYCLE MANAGEMENT

Error avoidance measures

The discovery and handling of defects can be supported with the use of various aids.
From the definition of a process model (e.g.12M, ITIL, V-model] to establish test levels
and quality gates, the alignment of a quality standard (e.g. SQuaRE, ISO/IEC 9126) to
define test criteria and the use of various product development methods (e.g. SAP Agile

Define

Prepare
acceptance test

Implement

requirements acceptance test Eeblogig

Prepare
system test

SE, KANBAN, Scrum) for handling production and acceptance criteria, right through to
the introduction of an effective risk management system and establishment of protec-
tion classes for application categories, the available spectrum in terms of testing is
extremely broad and dependent on a number of factors. To name but a few, these
include the sector in which the company operates, statutory framework conditions and
the potential impact of damage the application can cause to the business process.

Test levels

In essence, three different test procedures can be distinguished in relation to the
production of software products:

° White box
o Grey box
° Black box

Functional = Implement .
4- ﬁ * Debugglng

Technical > Prepare 3 Implement 3 .
<- DEbugglng

AV

] 7]
= x 2 Component =N Prepare Implement .

PROGRAMMING PROGRAMMING

Figure 4: W-model with test levels ¢'

Typical examples of white box tests are component and integration tests. A common
denominator in these tests is that the structure, implementation and sequence of
tested software artefacts are known. The tests are generally created, performed and
further developed within the scope of development directly by the developer team
within the development system.

The grey box test process precedes the acceptance test and is carried out following
production of the product or a product increment in the form of system tests. Generally,
these tests are performed in an environment similar to that of the production system
by a separate test team. The organisational division between grey and white box tests
has the advantage of allowing the development team to focus on its core tasks. The
test team validates the application from an alternative perspective and seeks to
identify possible weak spots or defects and the commensurate causes.

The black box test process examines the finished product without knowledge of the
internal software structure. Test scenarios are derived from the specifications and the
requisite functionality contained therein and serves as an acceptance test in relation to
acceptance of the developed product. Black box tests are carried out by the customer
in an environment that mirrors that of the production system as closely as possible.

62 In reference to http://www.informatik.hs-bremen.de/spillner/ForschungSpillnerWmo.pdf

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

64

http://www.informatik.uni-jena.de/dbis/veranstaltungen/zusatzinfo/2014/Sauer1_2014.pdf
https://de.wikipedia.org/wiki/IT_Infrastructure_Library
https://de.wikipedia.org/wiki/V-Modell
https://de.wikipedia.org/wiki/ISO/IEC_25000
https://de.wikipedia.org/wiki/ISO/IEC_9126
https://www.youtube.com/watch?v=oxFpedbxgSs
https://www.youtube.com/watch?v=oxFpedbxgSs
https://de.wikipedia.org/wiki/Kanban
https://de.wikipedia.org/wiki/Scrum
http://www.informatik.hs-bremen.de/spillner/ForschungSpillnerWmo.pdf

8. INFRASTRUCTURE AND
LIFECYCLE MANAGEMENT

Ensure that the defined test strategy is suitable for
your organisational and operational structure, role
responsibilities are clearly defined and development
team productivity is not hampered by unnecessary
organisational interfaces.

Base the intensity and extent of testing on the antici-
pated level of damage in the event of error and its
likelihood of occurrence. Ensure that only absolutely
necessary test cases are carried out and avoid
redundancies.

Involve the customer in the test case definition pro-
cess at an early stage. An overall test scenario to
validate the requirement should be established with
the customer during the requirement definition phase.
An improved product specification frequently results
as a positive ancillary effect. An initially general
description of test cases in the requirement definition
phase can be honed during subsequent development
phases.

|

8.5.2 TEST AUTOMATION

Test automation is suitable for all areas in which a sequence of manual work steps
regularly has to be performed to check the correct behaviour of a functionality. The
decision as to which actions should be automated will depend on the risk category, the
level of complexity, frequency of execution and the ratio of manual costs to automation
costs. Repeatable automated tests can be extremely efficient.

Two approaches apply:

o at source code level: unit tests with ABAP Unit

J on a higher level: automated function tests using eCATT or third-party tools
Advantages of automated tests:

o Software functionality can be tested following changes without the additional
investment of time.

J Unit tests are useful for finding errors as early as the development phase and
help developers create a good design (modularisation, simplicity].

Disadvantages of automated tests:
J following changes existing tests and test data need to be adapted to some extent

o This should be a somewhat seldom requirement for unit tests with good
modularisation.

. In the case of automated function tests, this will depend on whether the
changes impact down to ‘the very core’ of the tested level. Interface changes
are generally more problematic because the tests are usually controlled
from this level, meaning controlling has to be adapted.

o greater initial expense

J possibly more complex implementation, e.g. for unit tests, if database calls are
not encapsulated

The use of unit tests is particularly favourable in the following scenarios:
J Frequent software modifications are to be expected

J Software parts will presumably be reused,

o Complex functionality

o SAP NetWeaver software version

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

o Test Double framework available (SAP NetWeaver 7.40 SP9 upwards) Where the application core, for example, no longer communicates directly with the
database, data constellation simulation is an option for the implementation of unit
o Alternatively, the open-source tool MockA% is available for release SAP tests. In this respect, the test doubles referred to above are particularly practical.
NetWeaver 7.01 upwards
Separation of the layers can sometimes also be helpful for automated function tests;
o .Test Seam” ABAP statement available for SAP NetWeaver 7.50 upwards however the focus with eCATT centres on control via SAP GUI.

The use of unit tests is less advisable in these scenarios:

o Classes designed to provide database access (‘database layer’, ‘model’ in model
view controller model] that contain no complex logic.

(=]
4
<
L
o
)
[
(&
o)
o
[
wn
<
o
L
=z
©

LIFECYCLE MANAGEMENT

In deciding which processes to use for automated
regression tests, use the call statistics available in
the SAP system [transaction statistics via STO3N/

o Existing software with poor modularisation (above all if test seams are not yet usage procedure loggingl.
available, see above).

e Classes designed for control and communication with the interface (‘'view’ in the
Model View Controller design pattern] that contain no complex logic.

When introducing unit tests or automated function
tests start with a small committed team. The experi-
ence and success of this team can be used as a
success story for further introduction of the subject
within your organisational unit. It is important that the
team is committed to its task and can substantiate the
benefits of this activity with examples.

-

Consider the use of automated tests.

Develop competence in this area.

|

In the ABAP environment, database or interface integration can frequently hamper the
creation of repeatable, automated tests. For tests, the modularization is the already ADDITIONAL SOURCES
useful solution.
1. http://www.testbarkeit.de

|7 —| 2. http://de.wikipedia.org/wiki/Testbarkeit

3. http://www.testbarkeit.de/Publikationen/TAEQ5 Artikel jungmayr.pdf

Within your applications, separate direct interaction
from the database, user interface and remove sys- 4 ABAP Unit Tests
tems from the actual application core.

J 5. ABAP Test Double Framework

6. ABAP Test Double Framework versus mockA

63 see https://github.com/uweku/mockA 7. Test Seams and Injections

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -66-

https://github.com/uweku/mockA
http://www.testbarkeit.de
http://de.wikipedia.org/wiki/Testbarkeit
http://www.testbarkeit.de/Publikationen/TAE05_Artikel_jungmayr.pdf
http://help.sap.com/abapdocu_750/en/index.htm?file=ABENabap_unit.htm
http://scn.sap.com/docs/DOC-61154
https://scn.sap.com/community/abap/blog/2016/02/07/abap-test-double-framework-versus-mocka
http://scn.sap.com/community/abap/blog/2015/10/23/abap-news-for-750--test-seams-and-injections

-
z
Ll
=
4
o
=
>
=z
Ll
=
=z
Ll
=
o
o
-
L
>
L
a
w
wn
o
-
(&)
Ll
o

9 ECLIPSE DEVELOPMENT ENVIRONMENT

In the past, developments within the SAP environment exclusively addressed ABAP
Workbench tools (SE80). Within the scope of new technologies, recent years have seen
the launch of other development tools such as SAP Web IDE (SAP UI5 browser-based
development) or SAP HANA Studio (Eclipse-based environment for administration and
native development on/with HANA).%* As of AS ABAP 7.31 SP4, the successor to ABAP
Workbench, ABAP Development Tools (ADT) for Eclipse, has been available for ABAP
development. ADT is based on the Eclipse development environment, expanded by the
commensurate plug-ins for enabling development in ABAP.

9.1 REQUIREMENTS AND INSTALLATION

As a minimum, the aforementioned release AS ABAP 7.31 SP4 and Kernel 7.21 are
required to use ADT for Eclipse. However, the range of available ADT functions is not
only dependent on the ADT version used, but also the version of AS ABAP. A continu-
ously updated overview of the functions available with the various AS ABAP versions is
obtainable under [1] in SCN.

In contrast to the ABAP Workbench, an additional installation at the developer work-

stations is required for ADT. An updated installation manual for ADT is available under [2].

As an alternative to the manual and depending on the size of the enterprise, an
alternative basic package (Eclipse IDE + ADT) is to be made available via the standard
distribution mechanism, which only needs to be updated locally to the latest version
(via the SAP update site or in-house).

9.2 NECESSITY

ADT for Eclipse has been designated by SAP as the successor to ABAP Workbench.
New object types such as ABAP Core Data Services (CDS] can no longer be processed
with ABAP Workbench (SE80 or other SAP GUI transactions) as this is under constant
maintenance. Also the range of ADT functions is growing with every release. SAP GUI
transactions seamlessly integrated into ADT are called for those functions not yet
implemented in ADT (for example creating extensions). A changeover to ADT will
effectively become necessary in the mid-term.

64 This is not a recommendation for HANA Studio for developing native HANA applications.

9.3 ADVANTAGES

The advantages and disadvantages of using ADT are principally dependent on the
particular procedure and specific project environment. In the following subsections,
we outline what we believe are the most important advantages and disadvantages of
working with ADT. [1] provides an excellent overview of all the functions available with
ADT as does the ADT FAQ document [7].

ADT workspace

Working with ADT means when editing ABAP source code, developers are no longer
bound by SAP GUI modes. In other words, numerous sources can be open simultane-
ously and these will be maintained in the exact same form even after logging out/in.
ADT links enable the creation of links with line-based precision to points in the ABAP
source code and also the sharing of such (see [3]). It also enables organisation (see [4])
of the Eclipse tool Mylyn, the ADT workspace and opened ABAP source code using
tasks (e.g. from a ticket system).

Configurability of the ADT workspace

Eclipse and consequently ADT enable the workstation to be configured more flexibly.
Views can be enlarged or the position of certain views changed simply by drag and
drop. Furthermore, the linking of views enables, for example, the ABAP Documentation
view to always display the documentation relating to the currently selected keyword.
Editor functions

The editor itself offers a range of additional functions to enhance developer efficiency.

o Ongoing syntax check (not first after a manual call as in SE80 through pressing a
button in the editor)

o Quickfix functions: the system suggests options for resolving current syntax
errors (e.g. semi-automatic creation of a new method with the parameters used)

o Syntax or ATC check results are marked in the editor window and any associated
messages are revealed per mouseover

o Code element information: pop-ups with information on development objects
used in the code

. ABAP Doc as an integrated documentation option

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

67

-
z
Ll
=
4
o
=
>
=z
Ll
=
=z
Ll
=
o
o
-
L
>
L
a
w
wn
o
-
(&)
Ll
o

Refactoring functions

ADT offers a plethora of automatic refactoring functions, which allow, for example, the
renaming of a variable and all its applications or automatic deletion of unused variable
declarations. More complex refactoring functions enable automatic extraction of a
method or attribute.

Improved runtime analysis

The runtime analysis (see [5]) integrated within ADT allows the graphic visualisation of
ABAP traces. This visualisation enables source code critical to performance to be
easily identified and optimised.

Enhanced version history

Version history integrated within ADT can be remotely used across systems and also
has a local (workstation-based) history, thereby providing optimum flexibility.

SQL tools

Classic SQL developer tools have also been reinvented in ADT, examples being an SQL
console and an integrated data preview function.

Extensibility

As Eclipse is an open platform it is extremely flexible in terms of expansion, with the
commensurate SAP tools consequently available. ADT can also be expanded using
existing tools in the Eclipse ecosystem. Also available is an SDK (Software Develop-
ment Toolkit) for ADT (see [6]) that can be used to expand ADT with customised
functions. There is also an SAP code jam on the subject.

9.4 CONSIDERATIONS

In addition to the advantages mentioned, working with ADT for Eclipse also has a few
disadvantages.

Difficulties getting started and with changeover

Starting out using any new tool involves an initial phase of readjustment and familiari-
sation. Specifically, the changeover from ABAP Workbench to ADT also means getting
used to a new set of development paradigms. While form-based editors largely prevail
(e.g. for classes and methods) in ABAP Workbench, ADT primarily uses source-code-
based editors. So in addition to learning how to use a new tool, developers need to
familiarise themselves with a new form of processing source code. In our opinion, this
is a preliminary hurdle that should not be underestimated.

All things considered though, after changeover it ultimately becomes clear that
development based on source code is significantly more efficient.

Omitted special transactions

ADT does not support all special transactions that are available on SAP GUI. Although
the range of ADT functions is constantly being expanded (e.g. to include modelling
functions for BOPF), all the special functions will still not be definitively available in
ADT in future. These can however be called within ADT through SAP GUI integration.
That said, application using SAP GUI integration is not always the ideal solution. Work
with SAP CRM WebUI tools in ADT, for example, is sometimes inconsistent. Certain
objects within the SAP CRM WebUI tools are opened for processing in ABAP Work-
bench, while other objects are opened in the ADT editor.

9.5 PROBLEMS AND SUPPORT WITH CHANGEOVER

Experience shows that the first few days working with ADT may be a bit bewildering.
Particularly the free configurability of the development environment and development
paradigms based on source code can prove difficult for experienced SAP developers.
These may not initially be perceived as being advantageous and may even be regarded
as an unnecessary modification devoid of added value. This will change after overcoming
the initial hurdles and development efficiency will increase accordingly.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

68

-
z
Ll
=
4
o
=
>
=z
Ll
=
=z
Ll
=
o
o
-
L
>
L
a
w
wn
=
-
(&)
Ll
o

Despite having the option of changing all the shortcut keys, we recommend that develop-
ers familiarise themselves with the standard shortcuts. This will avoid any unnecessary
setting up work for different workstations and remote working environments.

Itis also a problem if ADT development is carried out on several systems that have a
different release status. In this case, certain functions may not be available on all the
systems [compare [1]).

If a company has a large number of developers, starting the introduction of ADT with a
training seminar or presentation of the tool is an established way forward (terminology
and basic settings).

Alternatively, integrated into ADT is the so-called Feature Explorer, which is a kind of
self-study tutorial that explains the basic work process with ADT. For example, it
shows how to extract a development system in ADT, or parts of a method using the
refactoring tool.

A further induction option is to participate in an SAP code jam for ABAP in Eclipse.®

9.6 CONCLUSION

As of release 7.40 at the latest, the advantages of ADT will outweigh the disadvantages.
The level of effort required for changeover is reasonable (albeit different, depending on
the motivation and ability to learn). Changeover will likely be much more straightfor-
ward for younger employees who have worked in development environments outside
the ABAP Workbench.

| B

Based on our experience, we advise using ADT as of AS
ABAP Release 7.31 SPé.

|

65 Cf http://scn.sap.com/community/events/codejam

9.7 ADDITIONAL SOURCES

[1 ABAP in Eclipse Feature Matrix

[2] ABAP in Eclipse Installation Guide

[3] How ADT links change the way you work

[4] Use mylyn tasks to organize your ABAP in Eclipse workspace

[5] ABAP Profiling in Eclipse

[6] First version: SDK for ABAP Development Tools

[71 ADT FAQs

[8] BOPF Modelling in ADT

[9] ADT Feature Explorer

[10] Get Started with the ABAP Development Tools for SAP NetWeaver

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

http://scn.sap.com/community/events/codejam
http://scn.sap.com/community/abap/eclipse/blog/2013/06/05/adt-feature-availability-matrix-for-as-abap-releases
https://tools.hana.ondemand.com/#abap
http://scn.sap.com/community/abap/eclipse/blog/2013/05/10/how-adt-links-change-the-way-you-work
http://scn.sap.com/community/abap/eclipse/blog/2015/02/27/use-mylyn-tasks-to-organize-your-abap-in-eclipse-workspace
http://scn.sap.com/docs/DOC-41223
http://scn.sap.com/community/abap/eclipse/blog/2013/05/10/first-version-sdk-for-abap-development-tools
http://scn.sap.com/docs/DOC-29113
http://scn.sap.com/community/abap/bopf/blog/2014/05/09/bopf-modelling-in-eclipse
http://scn.sap.com/community/abap/eclipse/blog/2014/03/28/get-more-out-of-abap-in-eclipse-with-the-feature-explorer
http://scn.sap.com/docs/DOC-29297

=)
Ll
(&)
<
[T
o
11]
-
Z
o
L
(2]
)
(=]
-—

10 USER INTERFACE (Ul)
10.1 UI TECHNOLOGIES IN PRACTICE

Ul Technology

SAP Roadmap

Ul technologies are playing an increasingly important role in development projects. As
such, we would like to address this in this section of the guidelines.

Dynpro (classic]) Only support

The "new” SAP Ul technologies form the focal point of the Ul section given that; with
SAP products, we are observing a clear trend towards SAPUI5 as a Ul framework and
SAP Fiori as the leading way to access the SAP environment.

Notwithstanding, we still rate web dynpro and classic dynpro, for example, as import-
ant Ul components in the SAP environment. Many customers are availed of recommen-
dations and also have a broad basic knowledge base regarding these long established
technologies.

Business Server Only subport
Pages (BSP) ysupp

WebClient UIF

Web Dynpro Java Only support

Web Dynpro ABAP
incl. Floorplan
Manager

SAP EA Explorer®®is recommended to gain an initial overview of the various Ul technol-
ogies. This platform offers a good introduction to the various aspects of user interfac-
es. This guideline presents the key Ul technologies listed in the following table. The
table itself is limited to an overview and brief assessment for use in with (new) devel-
opments.

Only support

SYA RTINS E I Minor expansions

SAPUI5 Strategic

Minor expansions

Comment

SAP advises against
new development
projects.

Small development
projects, principally
simple reports with
generated selection
screen.

Favoured by power
users

Replaced by Web
Dynpro

Developed in CRM on
the basis of BSP
technology and
operational

Should no longer be
used

In combination with
Floorplan Manager
less effort involved as
standalone

Configuration and
scripting (Java-
Script), to make
existing applications
more appealing and
operable based on
classic dynpros

Recommendation for
new developments

Still useful in many
cases for small
development projects

No longer practical

Still relevant for
classic

CRM apps. SAP
Hybris C4C uses
SAPUI5/SAP Fiori in
this case

No longer practical

Practical for large
new development
projects. Also
consider SAPUI5

Practical for Ul
revision of existing
dynpro programs

Practical. See
advantages /
disadvantages below

SAPUIS is currently the favoured Ul technology for state-of-the-art SAP applications.
Nevertheless, we recommend that consideration is given to the Ul technology to be
applied at the beginning of a development project. The following contrast of advantages
and disadvantages should help in the decision about the application of SAPUIS.

66 SAP EA Explorer

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -70-

https://eaexplorer.hana.ondemand.com/

=
L
(&)
<
(T8
o
w
(-
4
o
w
wn
)
o
-

Advantages SAPUI5

‘ Disadvantages SAPUI5

* Requires JavaScript (ABAP only in backend).
Hence skill development necessary

e Comprehensive collection of standard GUI
elements that significantly simplify

implementation » Requires SAP Gateway (additional cost in

the case of recommended separate
installation)

o State-of-the-art look

* Theoretically everything possible that the
HTML5/JavaScript combination allows e Missing features and reduced performance
in specific cases and circumstances in

comparison to SAP GUI/ALV

* Relatively new technology, hence problems
» Responsive Ul (automatically adapts to the possible when using tools and as end
respective screen size) product

e Can be used on tablets and smartphones

¢ No client to install

e Utilisation of client device capabilities e.g. e Complex apps require more effort (stateless
cameras apps)

* Native SAP Fiori Launchpad integration

¢ Relatively new technology; as such,
optimum integration in current web
browsers

SAP Fiori is the new user experience (UX) in terms of current SAP solutions estab-
lished based on modern design principles. The subject of SAP Fioriis only briefly
addressed in this SAPUI5 section, as the underlying technologies in the on-premise
environment are currently SAPUI5 and SAP Gateway. The subject of the HANA Cloud
Platform (HCP) is not explicitly broached in the Ul section as the SAPUI5 part is not
dissimilar to the on-premise environment and the on-premise best practices can
almost be applied one-to-one.

Design thinking has become increasingly important for UX in recent years and should
also be considered for comprehensive end-to-end processes.

Closely related to design thinking is the subject of mock-up. Established tools are
available that encompass ready-to-use SAP Fiori Design Stencils®’ that visualise SAP
Fiori UX patterns. A new SAP product in this area is Splash/BUILD, but the position in
summer 2016 was that the product was still at the beta stage, so not a great deal of
experience has been garnered.

67 SAP Fiori Design Stencils

10.2 SAPUI5

Within the framework of the SAP user experience strategy®®, SAPUI5 represents a
modern toolkit for HTML5-based development projects. Applications developed with
SAPUI5 are characterised by a responsive web interface on desktop browsers as well
as mobile client devices.

SAPUI5 is also distributed through an open-source licence (Apache 2.0) under the
name OpenUI5.¢ However, this distribution does not encompass certain components
such as diagrams and smart controls.

Currently developed applications are being brought to fruition in accordance with SAP
Fiori design guidelines’ to ensure an optimised multi-device user experience and to
assimilate the look and feel of SAP applications. From the beginnings of a library
SAPUI5 now only contains out-and-out desktop-oriented components (sap.ui.com-
mons), which should no longer be used (deprecated).

10.2.1 REQUIREMENTS

To use SAPUIS, a supported client device is required in the frontend that is supported
by SAP within the SAP NetWeaver 7.5 PAM browser support.”

Browser Compatibility Matrix

Device Desktop Mobile

o0s < Microsoft Windows W) Mac OS #¢ Windows Phone BlackBerry
(Version) | "™ 7, 8, 8.1 (Touch), 10 10.10,10.11 ' 8, ® 8.1 (Update 1) 10

Browser Intemet Explorer ¢ Safari /
(WEE] 1+ 89

@ggemm

Microsoft Edge
Latest

- Mozilla Firefox
Latest

Goaogle Chrome
Latest

Figure 5: SAP NetWeaver 7.5 PAM browser support

68 SAP user experience strategy (UX]

69 OpenUl5 homepage

70 SAP Fiori Design Guidelines

71 SAP NetWeaver 7.5 PAM browser support

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

https://experience.sap.com/fiori-design-web/resources/downloads/
https://experience.sap.com/ux-strategy/
http://openui5.org/
https://experience.sap.com/fiori-design/
https://support.sap.com/content/dam/library/ssp/infopages/pam-essentials/TIP/NW75PAMBrow.pdf

=)
Ll
(&)
<
[T
o
11]
-
Z
o
L
(2]
)
(=]
-—

SAPUIS is highly significant from a strategic perspective and is a supplied component
with the following SAP systems:

SAP NetWeaver AS ABAP (e.g. SAP Business Suite or SAP Gateway)

As of NetWeaver Version 7.40 Ul and SAP Gateway components are constituents
of SAP NetWeaver. In previous versions they can be partially retrospectively
applied as add-ons.

SAP HANA
SAP HANA delivers a version of SAPUI5 SDKs appropriate for HANA SP (XS
Classic). As of SPS 11 and XS Advanced, SDK must be integrated via CDN.

SAP HANA Cloud Platform (HCP)
SAP HCP offers the option of developing SAPUI5 and Fiori apps and in the form
of SAP Web IDE provides a development environment for SAPUI5.

SAP Enterprise Portal (EP)
SAP Web IDE enables direct deployment of an SAPUIS application within the
portal as an iView.

All systems also provide an SAP Fiori Launchpad (FLP), albeit in various stages of
development.

For SAPUI5 development, we recommend using the
Google Chrome browser (position in 2016). In the form
of UI5 Inspector’? (Google Chrome extension) SAP
provides a tool that is indispensable for developers.

In the SAP Web IDE, the layout editor only supports
Google Chrome (position 2016). End users can use the
developed applications with all standard browsers
and devices, insofar as supported by PAM.

In addition to SAPUI5 SDK, all the above-mentioned
systems also support SAP Fiori Launchpad (FLP).
Role-based SAPUIS5 applications can be started via
FLP, if these were designed in compliance with SAP
Fiori design guidelines and implement independent
components.

10.2.2DEVELOPMENT

—

]

SAP follows and supports the design thinking”® approach with regard to modern UX

development, which is then used to develop new processes and user interfaces. Design

thinking encompasses three phases: discover, design and deliver.

Prototype

360° Research

Figure é: Phases of design thinking

72 Ul5-Inspector [Google Chrome Extension)

73

Wikipedia definition of design thinking

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

72

https://chrome.google.com/webstore/detail/ui5-inspector/bebecogbafbighhaildooiibipcnbngo
https://de.wikipedia.org/wiki/Design_Thinking

10.2.2.1 Discover

B

The discovery phase involves endeavouring to understand a current customer problem
in order to creatively work out a solution process within a team. This resulting solution ; .
stipulates a specific work process for a defined target group. The user target group should become involved in the

prototyping process as early as possible given that an
application is designed to precisely meet the require-
ments and align with the work methods of the user.
Subsequent acceptance is also increased because the
target group was brought in during the design phase

10.2.2.2 Design

The design phase involves outlining a prototype, with the target group, that represents . | }
the best possible work process for meeting the requirements from the analysis. and assisted with the design.
In mutual workshops, the fastest way forward to
achieve results is through using the whiteboard.
77 1 1 78

« Paperand pencil SAPUI5 Explorer” and the SAP FIOFI.DemO Cloud

Still the simplest way to record ideas. are extremely helpful tools for teaching new users

about SAPUIS.

In 2016, Splash and BUILD still had a few bugs that
partially hindered productive use incl. code accep-

o SAP Splash and BUILD tance.
With Splash and BUILD", SAP provides a browser-based tool with which proto- The openSAP course ‘Build Your Own SAP Fiori App in
types can be created by drag & drop that comply with SAPUI5/ SAP Fiori standards the Cloud - 2016 Edition provides a comprehensive

and contain the commensurate widgets. A BUILD prototype can be imported into
SAP Web IDE for further development.’s introduction and overview of the subject SAP Fiori UX.

=)
Ll
(&)
<
[T
o
11]
-
Z
o
L
(2]
)
(=]
-—

Depending on the know-how and target group, the following tools can be used:

¢ Whiteboards/whitewalls
A more exclusive version of the paper and pencil.

|

J SAP Web IDE
SAP Web IDE” is actually a tool for developing and deploying SAPUIS5 applications.
However, the position since 2016 has been that an option is available in the layout
editor to create Uls via drag & drop. Mock-up data can also be stored to enable a
functionally expanded prototype incl. test data to be made available online
without the need for prior development of data services.

74 SAP Splash and BUILD [Design Great UX in the Cloud] 77 SAPUI5 Explored (Ul Explorer)
75 Kickstart your Fiori Web IDE project with Splash and BUILD 78 SAP Fiori Demo Cloud
76 SCN - SAP Web IDE - Quickstart 79 openSAP course 'Build Your Own SAP Fiori App in the Cloud - 2016 Edition’

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -73-

https://hcp.sap.com/capabilities/ux/build-splash.html
http://scn.sap.com/community/fiori/blog/2015/12/03/kickstart-your-fiori-web-ide-project-with-splash-and-build
http://scn.sap.com/docs/DOC-55466
https://sapui5.netweaver.ondemand.com/sdk/explored.html
https://www.sapfioritrial.com/
https://open.sap.com/courses/fiux2

=)
Ll
(&)
<
[T
o
11]
-
Z
o
L
(2]
)
(=]
-—

10.2.2.3 Deliver

If a commensurate prototype is adopted within the scope of prototype design, this can
then be transferred to an SAPUI5 application.

Tools

SAP supports SAPUI5 development with the following tools:

SAP Web IDE (on the cloud platform)

SAP Web IDE is a favoured SAP tool supplied within the scope of SAP HCP. In
addition to the free trial version [recommended for non-productive purposes), a
compact entry-level version® for 5 named developers was introduced in 2016. The
IDE supports the entire prototyping process from graphic layout editor to deploy-
ment in the cloud, onto the SAP system (when using SAP HANA Cloud Connector),
or the SAP portal (when using the commensurate SAP Web IDE plugins).

SAP development tools for Eclipse

As an alternative to SAP Web IDE, an Eclipse-based environment can also be used
and the required SAPUI5 functionality retrofitted using SAP development tools for
Eclipse.®’’ Development and testing is then carried out locally within Eclipse. The
finished SAPUI5 application/components can be directly deployed onto the SAP
system (as of AS ABAP 7.31 with Team Provider add-on). Currently, the plug-in is
under maintenance at SAP, in other words, no further development is being
carried out. Compatibility updates will still be delivered.

80 SAP Web IDE Entry-level version for 5 developers

81

SAP development tools for Eclipse

The recommendation in the SAP Fiori 2.0 guide is to
develop SAPUI5 user interfaces with the SAP Web IDE
and to use Eclipse ADT for SAP backend services; the
reason being that Core Data Services (CDS]) are not
supported on SAP GUI (position in 2016).

The SAP Web IDE offers the most comprehensive
range of tools and options for SAPUI5 development on
the cloud platform. Testing against an OData service
in SAP Gateway (http Destination) and deployment
also requires SAP HANA Cloud Connector, which
opens a tunnel via Internet proxy and consequently
builds a trust position to the SAP Cloud. SAP systems
and services that are still released can then be
authorised within SAP Cloud Connector.

If use of the Cloud Connector is not possible, the app
developed using SAP Web IDE can be exported (ZIP
file] and subsequently deployed to the ABAP system
via Eclipse ADT or the report /UI5/UI5_REPOSI-
TORY_LOAD.

Alternatively, Eclipse can be used with the commen-
surate tools. However, the graphic editors (WYSIWYG
layout editor), templates and SAP Fiori extension
support® will not be available in this case.

82 SAPUI5 extension using component configuration

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

74

https://www.sapstore.com/solutions/60009/SAP-Web-IDE
https://tools.hana.ondemand.com/#sapui5
https://tools.hana.ondemand.com/#sapui5

=)
Ll
(&)
<
[T
o
11]
-
Z
o
L
(2]
)
(=]
-—

Test

The SAPUI5 SDK provides functionalities for unit and component testing, with which
tests can be largely carried out automatically.

J

included in

Component Tests SAPUIS:

|

|

|

o

|
L--------------------------------I

Figure 7: Supported test phases in SAPUIS

SDK

The SAPUI5 Demo Kit® encompasses all the relevant information pertaining to SAPUI5
development. The kit is effectively an SAPUI5 knowledge base provided by SAP.

B

Prior to a project, every SAPUI5 developer should work
through the developer guide (a component of the SAPUI5
Demo Kit). The walkthrough tutorial in particular
demonstrates the basic use of core functionalities.

Frequently during development, code samples from
the Explorer app can be directly incorporated into
custom coding and modified.

Development based on SAP Fiori guidelines uses the
library sap.m. sap.ui.commons components which are
deprecated, i.e. where possible, thus they should not
be used. The latest versions of the controls listed
here are broadly available in redundant form within
sap.m components.

|

Interfaces

To support communication between the SAPUI5 application and an SAP backend
system (AS ABAP), a tool is available for SAP Gateway that as a service provider offers
OData Rest services as well as the SAPUI5 SDK. Service implementation is carried out
with the aid of ABAP Objects.

Within the SAPUIS5 framework, service communication generally occurs via the commen-
surate data models. This can involve the following models depending on the scenario:

J OData®
The OData model defines the data type and structures and enables REST-based
access to backend systems. SAP Gateway supports OData via the commensurate
services and from NW 7.40 onwards via Core Data Services (CDS). From NW 7.50
onwards, CDS can be provided as an OData service directly via an annotation. This
must first be manually created in SEGW.

83 SAPUI5 Demo Kit

84 0OData REST specification

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

https://sapui5.netweaver.ondemand.com/
http://www.odata.org

=)
Ll
(&)
<
[T
o
11]
-
Z
o
L
(2]
)
(=]
-—

JSON
Data exchange via standard JSON structures via http(s) calls. Within the AS ABAP
system, either the JSON RPC service can be used or an HTTP handler.

XML
Data exchange via XML structures. The AS ABAP server accordingly provides the
requisite XML transformations.

In addition to the models that enable request-based access to backend systems, a
further technology is also available in the form of the WebSocket API:

WebSocket

Push service technology with which a backend system can actively push data to a
client. The SAP-specific SAP Push Channel Protocol [PCP) can be used in this
connection. SAP Gateway provides the commensurate APC/AMC services.

B

Version 2 of the OData model is the data exchange
model favoured by SAP for accessing backend sys-
tems (position in Q2/2016). Version 2 and 4 are imple-
mented in SAP Gateway.

Where possible all communication should be imple-
mented on the basis of OData services, whereby one
component should communicate with only one OData
service (recommendation SAP Fiori design and
simultaneous restriction of the SAP Web IDE).

In certain scenarios, additionally including WebSocket
communication in the application scenario is an
option. This enables a real-time response to asyn-
chronous processes on the server.

|

10.2.3GENERAL RECOMMENDATIONS

New implementations should always be based on the SAP Fiori design guide-
lines® and use the sap.m library. This is the only way to ensure that developers do
not apply deprecated components, which are no longer further developed and
could disappear from the library at some point.

Ul design should exclusively use XML views, as only these are supported by tools
such as SAP Web IDE. The SAPUI5 extension framework only supports XML views
within the scope of extending SAP Fiori apps.

The library sap.ui.commons contains components that are not covered by the SAP
Fiori design guidelines and which were designated as deprecated at Ul5con.
Insofar as possible these libraries should not be used. Many customers have built
large-scale application scenarios on this basis; which then have to be migrated to
sap.m in the medium term to remain upgradeable.

One option to start with is to use an SAP Web IDE template. Unfortunately the
quality of the templates differs significantly as they were based on the SAPUI5
options available at the time they were created. The best option is to use a
suitable template based on the latest respective version.

In the SAP Web IDE projects can be created on the basis of SAP Fiori Reference
Apps®, which adopt a best practice approach for the apps Shop, Approve Pur-
chase Order and Manage Products.

The option of a Ul prototype with mock-up data is available prior to developing
relevant services as SAP annotations®” in the SAP Web IDE are easier to write and
test than in the SAP Gateway designer.

Business data should be accessed via OData entities provided by the SAP backend
system (e.g. Gateway). Consequently, the entire business logic is controlled and
managed in the backend. The SAPUI5 interface only maps the relevant field
information and controls workflows und visibility.

85
86
87

SAP Fiori Design Guidelines

SAP Fiori Reference Apps
SAP Annotations for OData Version 2.0

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

76

https://experience.sap.com/fiori-design/
http://scn.sap.com/docs/DOC-59963
http://scn.sap.com/docs/DOC-44986

=)
Ll
(&)
<
[T
o
11]
-
Z
o
L
(2]
)
(=]
-—

o Developers should use smart controls®® (or at least smart fields) where possible
to enable data type control by the OData service. If OData services based on
annotated CDS views cannot be used (only as of NW 7.50), then the required SAP
annotations can be applied manually and declaratively in SAP Gateway.

e SAPUI5 does not currently support customer-specific namespaces (e.g. /SAP/
FLIGHT'). When using smart controls the relevant Gateway services should be in
the Z namespace.

o Use the UI5 extensibility concept® for adapting and extending existing applica-
tions and components.

o The Ul theme designer available on all supported systems is usually used for
theming. A custom theme is normally based on the SAP BlueCrystal theme. As of
SAPUI5 1.38, work is being carried out on two versions of the new Belize theme,
which will showcase the new SAP Fiori 2.0 design. Belize theme version 1.40.x
will become the new standard theme and replace BlueCrystal.

10.2.4 ADDITIONAL SOURCES

. SAP Fiori Design Guidelines

° SAP User Experience Community

. SAP Fiori Cloud Demo

J SAPUIS SDK

o SCN SAPUI5 Developer Center

J SAP Web IDE

. OpenUl5

o openSAP courses
a. Developing Web Apps with SAPUI5
b. Build Your Own SAP Fiori App in the Cloud - 2016 Edition

88 SAPUI5 smart controls
89 Extensibility concept

10.3 SAP GATEWAY

SAP Gateway serves as a mediator between web technologies and classic SAP solu-
tions. SAP Gateway exposes data from ABAP-based backend systems.

10.3.1 USING SAP GATEWAY

The functionality of backend systems, which may be subject to extensive change,
should not be made directly available externally. Using APIs, the aim is to provide a
variety of consumers with stable access points on the systems (see APl Economy®?).

A primary application area for the SAP Gateway is user interface integration. Typical
consumers are websites, native mobile apps, web apps based on JavaScript (see Fiori
and UI5) and cloud platform applications. Whereas previously RFC-based technologies
have mainly been used for SAP development, RESTful services dominate for the above
application scenarios, usually in combination with the OData protocol.

OData

The OData protocol is a data exchange standard for the web that has full CRUDQ
functionality (Create, Read, Update, Delete, Query), which is why it is also known as
ODBC for the web. OData is based on the Entity Data Model, which describes each
modelled entity (object] and its associations.

JSON (JavaScript Object Notation) and ATOM/XML data formats are supported.

90 CW: APl Economy article

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

77

https://experience.sap.com/fiori-design/
https://experience.sap.com/
https://www.sapfioritrial.com/
https://sapui5.netweaver.ondemand.com/sdk/
http://scn.sap.com/community/developer-center/front-end
http://scn.sap.com/docs/DOC-55465
http://openui5.org/
https://open.sap.com/courses/ui51
https://open.sap.com/courses/fiux2
https://sapui5.netweaver.ondemand.com
https://sapui5.netweaver.ondemand.com
http://www.computerwoche.de/a/api-economy-eine-lohnende-herausforderung%2C3071198

=)
Ll
(&)
<
[T
o
11]
-
Z
o
L
(2]
)
(=]
-—

Deployment options

SAP Gateway can be deployed in three different variants:

Central hub deployment Central hub deployment Embedded deployment

Development in backend Development in Development in backend
SAP Gateway hub system

T
Service Implementation
MPC&DPC
SAP Gateway Hub SAP Gateway Hub

Service Implementation

Service Implementation
MPC&DPC

MPC&DPC

SAP Business Suite backend SAP Business Suite backend SAP Business Suite backend

Figure 8: SAP Gateway deployment options *'

-

We recommend using the first variant (central hub de-
ployment, backend development). The main reasons for
this are better scalability and better integration into the
network infrastructure (e.g. Gateway in the DMZ]. Service
implementation (business logic) takes place in the back-
end. The second variant is only used if the backend system
does not have the necessary release status or there is no

way to deploy the requirements necessary (IWBEP com-
ponents, NW Basis Release < 7.40). The embedded deploy-
ment variant offers a streamlined start, but should not be
operated as long-term solution.

A fourth deployment option is now available with the SAP
Fiori Cloud Edition, whereby the SAP Gateway hub operates
within the HANA Cloud Platform.??

10.3.2DEVELOPING WITH SAP GATEWAY

RESTful services are an important component for realising stateless web apps, i.e.
SAPUI5-based apps. No app state or user session is stored in the backend system, only
the state of the last communication is known. This is in complete contrast to ABAP
programming with SAP GUI, where the backend always manages the condition of the
client (stateful apps). This has consequences for programming because pessimistic
lock logic can no longer be used for data changes within an environment of high-fre-
quency, parallel access operations. Moreover, there is also no session handling in the
classic sense, i.e. after closing a browser session only the last state following the last
OData service call in the backend is known.

If service calls are idempotent, i.e. always evoke the same result in the backend
(create, delete], then no problems arise. Difficulties emerge in the case of changes,
as locks should only be set for as long as the OData call is being executed in the

91 SAP Help: SAP Gateway Deployment Options

92 SCN SAP Gateway deployment options in a nutshell

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -78-

https://help.sap.com/saphelp_nw74/helpdata/de/3e/b1ea508f88bb7ee10000000a445394/content.htm
http://scn.sap.com/community/gateway/blog/2013/05/27/sap-netweaver-gateway-deployment-options-in-a-nutshell

=)
Ll
(&)
<
[T
o
11]
-
Z
o
L
(2]
)
(=]
-—

backend. As such, when a new query is initiated, it is possible that the data may have
been changed by another party. In such a case, the decision has to be made during
development whether such a change is relevant or not. A change that is not relevant
could be, for example, an approval step, whereby in accordance with the FCFS rule the
first changing party wins, and for subsequent callers the web app merely refreshes
with the change in question. For critical interfaces in which data synchronisation
between the backend and API consumers plays a major role, we recommend the
Gateway eTag-functionality.”® This enables data currency to be checked within the
application and provision of an appropriate response. Notwithstanding, options also
exist for continued use of classic lock concepts;’ although greater development effort
should be planned for in this case. Furthermore, concepts known from Idoc Inbound
Processing, for example, can also be used.

Developing with SAP Gateway generally consists of three phases, in which proposals
for naming conventions and best practices are presented. For the development of
OData services, SAP provides the Gateway Service Builder (transaction SEGW).

OData modelling

APl design plays a significant role in development projects. This triggers a classic
conflict of objectives between API reusability and fast data availability that is as
efficient as possible. Under no circumstances should the (standard) function module
interface simply be made available in the original form. More suitable is, for example,
encapsulation of the functionality using wrapper function modules. APl design should
be driven by APl consumer (e.g. a SAPUI5 web app) requirements.

o We consequently recommend observing the following for OData modelling:

o Entity type: entities should be tailored to the respective application and not driven
by the underlying database model. The application should be reflected in the
entity name.

o Complex types: serve entity structuring.

o Entity sets: entity type group, SAP recommends suffix sets, alternatively the
plural of an entity.

93 SAP Help: ETag Handling
94 SCN blog: Stateful

o Associations: associations should be formed where possible. The relationships
between data are highlighted and the number of calls minimised.

o Navigation properties: use entity type for relationship 1 and entity set? for
relationship N

Service implementation

For implementation use the standard ABAP Objects guidelines and naming conven-
tions.

When using the Gateway Service Builder ensure that the generated class only uses the
first 20 characters of the Gateway project name. Ideally the project name should be
selected so that either the first 20 characters enable accurate service identification or
the name must be adapted to the generated class. Otherwise a counter is automatically
added to the generated class (Model Provider Class, Data Provider Class), which
makes identifying the class during development difficult.

Service configuration

The external service name should draw on the functionality. Suggestions for the
naming convention:

o Technical service name:

J Z + <external service name>

o The _SRV suffix is automatically appended by SAP.
o External service name:

o Namespace: /<customer namespace>/ (if customer namespace is used,
otherwise Z*)

o Optional: GW_* as a prefix or infix enables simpler allocation as a Gateway
service

o System alias: using the alias name as the landscape name is recommended as
system aliases are transportable.

95 SCN-Blog: OData Templates

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

http://help.sap.com/saphelp_gateway20sp09/helpdata/en/76/278e53f9bd3e27e10000000a44538d/content.htm
http://scn.sap.com/docs/DOC-64970
http://scn.sap.com/community/gateway/blog/2015/03/12/standards-templates-for-odata-service-development

=)
Ll
(&)
<
[T
o
11]
-
Z
o
L
(2]
)
(=]
-—

10.3.3GENERAL RECOMMENDATIONS

The following subsection contains a number of guidelines that should be observed
when developing with SAP Gateway. Some points refer to additional sources.

OData/functionality

o SAP Help provides an excellent overview of OData best practices.?

o Observe the ‘separation of concerns’ design principle when developing OData
services. Business logic belongs in the backend, service implementation should

be limited to ‘glue code’.

o Complete OData syntax is not offered. SAP Note 1574568 encompasses an
overview of what is supported, e.g. restrictions exist for $filter options.

o The use of OData annotations®” simplifies the Ul development process consider-
ably. Consequently, the use of annotations in OData services is recommended
especially from release status 7.50 onwards.

o When using multiple backend systems within an SAPUI5 web app, use of the Multi
Origin Composition (MOC]) functionality is recommended.

Performance
o Use $batch and $expand? instead of multiple parallel calls.

o With the $select option, OData gives the option of limiting the volume of trans-
ferred data. In principle, as little data as possible should be transferred.

96 SAP-Help: OData do’s and dont’
97 SCN blog: Annotations in ABAP
98 SCN blog: Performance do’s and dont’s

Security
e Theuseof TLS is mandatory (HTTPS)

o When using SAP Gateway as a hub, a trust relationship® (trusted RFC link] must
be established between the Gateway and called backend system.

o The SAP NetWeaver ABAP application server supports a variety of authentication
methods that can be used in the SAP Gateway. Various methods are recommend-

ed (Kerberos, SAML 2.0 ...) depending on the scenario (desktop applications, web
applications...)."?

10.3.4 ADDITIONAL SOURCES

. SAP Community Network

SAP Online Help

99 SAP Help: Trusted System
100 SAP NetWeaver Gateway Authentication and Single Sign-On

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

80

https://launchpad.support.sap.com/%23/notes/1574568
http://help.sap.com/saphelp_nw74/helpdata/en/c6/fd2651c294256ee10000000a445394/content.htm
http://scn.sap.com/community/abap/blog/2015/11/13/abap-news-for-release-750--annotations-in-abap-cds
http://scn.sap.com/community/gateway/blog/2013/07/09/gateway-performance-best-practices--how-to-consume-gateway-from-performance-point-of-view
http://scn.sap.com/community/gateway
http://help.sap.com/nwgateway
https://help.sap.com/saphelp_erp60_sp/helpdata/de/22/042671488911d189490000e829fbbd/content.htm
http://help.sap.com/saphelp_ewm91/helpdata/de/c4/81215150e92414e10000000a44176d/content.htm

11. THE AUTHORS

11 THE AUTHORS

The following authors contributed significantly to the creation of the 2nd edition of
these guidelines:

Dr. Christian Drumm

Head of Application Development & Consulting, FACTUR Billing Solutions GmbH

Dr. Christian Drumm has worked within the SAP environment since 2004. Following a
period with SAP research, he has held various roles (developer, project manager,
architect] as a consultant focusing on SAP CRM and SAP IS-U. Since 2013 he has
headed the application development and consulting department at FACTUR Billing
Solutions GmbH.

Martin Fischer

Portfolio Unit Manager SAP Database & Technology, BridginglT GmbH

Martin Fischer has been involved with SAP since 2001. After starting out as an SAP
FI/CO module functional consultant, his work since 2007 has centred on software
development and architecture with an emphasis on ABAP. Following positions at
various consulting companies, in 2011 he joined bridgingIT, where he has technical
responsibility for the SAP database & technology portfolio.

Judith Forner

Senior Consultant Finance & Controlling, Mundipharma Deutschland GmbH & Co. KG
Judith Forner has worked as an SAP consultant and ABAP developer since 1999. In
addition to classical process consulting in relation to FI, CO and PM modules, her focus
centres on user-friendly enhancement of the standard SAP program and external
system integration.

Edo von Glan

SAP Developer, Dragerwerk AG & Co. KGaA

Edo von Glan has worked as a software developer for IBM and Commerzbank and also
spent seven years in product development at SAP. Since 2008 he has been employed in
the SAP development department at Drager, six years of which have been in a manage-
rial position. His sphere of responsibility encompasses application and interface
development, custom code lifecycle management and software quality for the SAP
systems administrated centrally within the company.

Florian Henninger

Senior Consultant SAP Development, FIS GmbH

Florian Henninger is a certified ABAP developer and has worked in SAP-ABAP devel-
opment since 2010. His professional focus centres on core development/enhancements
and output management in relation to ERP implementation projects and existing systems.
In addition, he is also a quality management team member, coach and SAP mentor.

Martin Hoffmann

Head of Software Engineering, Miele & Cie. KG

Martin Hoffmann has worked in a development-related environment since 1987, gaining
experience both as a developer and in various managerial positions within the develop-
ment sphere. Since 2007 he has been responsible for software engineering at Miele.

Valentin Huber

Senior IT Consultant, msg systems ag

After previously gaining experience in C++ and Java development, Valentin Huber has
worked as an ABAP developer and software architect for custom developments since
2012. As an iSAQB certified professional for software architecture (foundation level)
and advocate of clean code development, he has a passion for the extensibility and
maintainability of software systems.

Jens Knappik

SAP System Architect, thyssenkrupp Materials Services GmbH

Jens Knappik has worked as an ABAP developer within an international project
environment since 2004. Up to 2012 he steered product development of the SD-CAS
and CS modules in his capacity as lead developer. Since then he has been a consultant
for the strategic alignment and definition of standards in the ABAP environment for the
central business area template.

Dr. Christian Lechner

Principal IT Consultant, msg systems ag

Dr. Christian Lechner has worked in SAP software development (standard and custom
development) in various functions (developer, project manager, software architect)
since 2005. Since 2015 he has headed the architecture department of the development
business unit at msg systems ag.

Steffen Pietsch

Head of Backoffice, Haufe-Lexware GmbH & Co.KG

Steffen Pietsch has worked in SAP development-related fields since 2003, gaining
extensive practical experience as a developer and in various managerial positions in
the consulting and development environment. Since 2009, as spokesperson of the
DSAG working group on development, he has championed the interests of customers
and partners in cooperation with SAP.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

81

11. THE AUTHORS

Daniel Rothmund

IT Business Analyst SAP, Geberit Verwaltungs GmbH

Daniel Rothmund has worked in various roles within the SAP environment since 2008
and has been responsible for the central SAP development team at Geberit since 2016.
As spokesperson of the DSAG working group on Ul technology he has championed the
interests of customers and partners in cooperation with SAP since 2015.

Holger Schafer

Business Unit Manager, UNIORG Solutions GmbH

Holger Schéafer has worked within the SAP environment since 1999, focusing on user
interfaces, integration, HANA/HCP and e-commerce. He is also a member of the
working group on Ul technologies and the OpenUI5 community. Since 2010 he has been
responsible for the strategic business development of new SAP technologies

Denny Schreber

Senior Solution Architect, cbs Corporate Business Solutions

Unternehmensberatung GmbH

Denny Schreber has worked with SAP-related technologies since 2007, focusing on
mobile and Ul technologies and integration. Previously he was involved in the develop-
ment of Java software. Since 2015 he has been deputy spokesperson for DSAG-AG Ul
technologies.

Andreas Wiegenstein

CEO and Co-founder of SERPENTEQ GmbH

Andreas Wiegenstein works in the field of SAP security since 2002, focusing on cyber
risks. He frequently lectures on the subject of SAP security at international conferences
such as Troopers, IT Defense, RSA, Black Hat, Deep Sec, Hack In The Box, hackERP,
SAP TechEd and at DSAG events.

Barbel Winkler

System Analyst SAP Basis/Programming, Alfred Karcher GmbH & Co. KG

Barbel Winkler has been involved with ABAP programming and project work in the SAP
environment since 2000 and has worked on custom developments and their coordina-
tion at Alfred Karcher GmbH & Co. KG. since 2011. Her responsibilities include the regular
updating of development guidelines, evaluation and appraisal of detailed development
requirements and overseeing the implementation of external programming.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

82

APPENDIX A

APPENDIX A: NAMING CONVENTIONS

Two contrary approaches exist for ABAP naming conventions. The main distinction is
whether the data type (structure, table, reference, primitive...) should be encoded with
a prefix letter in the object name or not.

Naming conventions that prescribe the data type as a prefix to object names normally
also call for further technical, functional or organisational categories to be included in
the prefix. As such, these could be described as ‘long’ naming conventions. There is a

connection to the Hungarian Notation invented by Microsoft.!"

A closer look reveals that the long naming convention is only half-heartedly applied, as
with encapsulated data types, where the convention is only applied at the first level,
(LS_CUSTOMER-PARTNER-HISTORY instead of LS_CUSTOMER-S_ PARTNER-T_HIS-
TORY]).

In contrast, there is the ‘short” naming convention, where previously only prefixes were
stipulated to differentiate the parameters (I_ for IMPORTING, E_ for EXPORTING, etc.)
and the focus instead currently lies on meaningful ‘definitive’ names. The authors of
the 'ABAP Programming Guidelines’ (now part of F1 Help) are advocating this type of
naming convention.

Advantages of long naming conventions

o The object type is immediately clear upon reading the source code, without, for
example, the need to navigate in the DDIC.

o Unintentional obscurity (e.g. types in methods vis-a-vis types in the class) is more
easily avoided.

o Object names look consistent and organised through the uniform prefix (even if
the definitive part of the name is not well selected).

Disadvantages

o A complete and unambiguous system is comprehensive and complex, see the
discussion in the ‘ABAP Programming Guidelines” manual.

o The reading speed of source code is reduced as technical and semantic informa-
tion is mixed.

101 https://de.wikipedia.org/wiki/Hungarian_Notation

o The amount of effort required increases if the technical type and/or visibility
changes. This is also the case where, for example, allocation to the application
hierarchy/organisation is part of the name and the objects are to migrate to
another area.

o Semantic information can be lost due to lack of space.

o Mastering, controlling and updating conventions involve more effort.

The advantages of short naming conventions

o More space and greater awareness of distinctive names when reading and
writing.

J No redundant information (the data type is determined through forward naviga-
tion/F2 (ADT), original system is in the object catalogue, allocation to the applica-
tion hierarchy can be derived via the package, etc.).

The first version of these guidelines supported a long naming convention variant,

which on the basis of our own experiences and the current position of debate in trade

literature and the SCN (see Appendix A.3) we no longer advocate.

Below is an example of what a more streamlined naming convention could look like.

General note:

o Objects in ABAP Dictionary are subject to various restrictions on the number of
characters available, which have to be observed when naming an object.

o The customer namespace Y... is used in the following. As specified in Section 2,
the alternative namespace Z... or a custom namespace /.../ can also be applied.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

https://de.wikipedia.org/wiki/Ungarische_Notation

APPENDIX A

A.1 REPOSITORY OBJECT NAMING CONVENTIONS

Naming conventions in the ABAP repository serve to avoid name conflicts through
duplicate names and by using a standard approach make object names more compre-
hensible. They also take developers out of the decision-making process, which enables
them to focus on implementing requirements and means they do not have to invest
effort in individually avoiding name duplication. Furthermore, conventions in the
source code support the application of object-related operators (for example: INSERT
instead of APPEND for adding another line to a sorted table]. Repository objects are
largely differentiated'®? by their object catalogue entries, which means from a technical
perspective very few conflicts will arise during naming. Also, naming conventions are
enforced by the development environment for various objects such as exception
classes (prefix = CX] and lock objects (prefix = E).'%

The following conventions expand on the principles defined in the information above. A
primary aim of the guidelines is to provide a set of practical and pragmatic rules that
largely avoid any overregulation. In this respect conventions are only established for
competing objects based on SAP standard (e.g. prefix conventions for type information
from the BOPF framework].

Naming conventions comprise the following elements and are sometimes separated by
an underscore:

Element

[Namespace]

[Type information]

[Context]

[Semantic information]

[Pattern]

‘ Meaning

Customer namespace or
reserved customer name-
space.

Technical object abbreviation
for a specific type. Not
required for every object.

Consolidating work area, a
product or the allocation to
the application hierarchy or
software components.
Normally the context is
formed via a structure or
main package.

Information on a domain
object, whose purpose or
known application patternis
based on a ubiquitous and
comprehensible language
(see Section 2.3).

A pattern is an optional part
of semantic information and
specifies an established
procedure within the scope of
design/programming.

‘ Example

Z = Development without
transport layer

Y = Transport-relevant
development

CL = Global class

Application hierarchy SD:
Sales & Distribution

OPEN_ITEMS_LIST

Application:
Worklist/Chart/Overview
Design:

Master/Detail implemen-
tation'®

Factory/Data Access Object/
Gateway

102 Except tables and structures. These both have the TADIR object type TABL.
103 Further details on the commensurate objects are provided in SAP Note 16466

104 As multiple patterns are often used simultaneously within the scope of implementation, details of the
patterns used are better commented in the source code than in the object name.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

84

https://launchpad.support.sap.com/#/notes/16466

<<
=
[=}
z
w
o
o
<<

A.1.1 PACKAGE HIERARCHY

Type

Name formation

Examples

Structure/main/development package:
Packages are ideal for grouping multiple development objects
into a semantically coherent unit.

[Single nounlcompound noun]
Application Hierarchy / Software Component:
- Y_DEVELOPMENT_FOUNDATION (Structure package)
- Y_ERP_CENTRAL_APPLICATIONS (Structure package)
- Y_ACCOUNTING (Structure package)
-y
- Y_LOGISTICS (Structure package)
- Y_LOGISTICS_EXECUTION (Main package)
- Y_PROCUREMENT (Main package)
- Y_SALES (Main package)
- Y_COMPUTER_AIDED_SELLINGS (Main package)
- Y_CAS_COMMON (Development package)
- Y_NETWEAVER_PLATFORM (Structure package)
- Y_SAP_DELIVERABLES (Structure package)
- Y_RAPID_DEPLOYMENT_SOLUTIONS (Main package)
- Y_SAP_BEST_PRACTICES (Main package)
- Y_SAP_NOTES (Main package)
- Y_SNOTE_2294645 (Development package)

Type

Name formation

Examples

Name formation

Examples

A.1.2 DICTIONARY OBJECTS

Type

Name formation

Subpackages:

Subpackages divide superior packages into specialised work
areas. To highlight object association we recommend using
the same prefix namespace for all objects in the package/
subpackage hierarchy.

[Abbreviation of superior package] [semantic information]
- Y_COMPUTER_AIDED_SELLINGS (Main package)
- Y_CAS_BUSINESS_OBJECTS (Development package)
- Y_CAS_COMMON (Development package)
- Y_CAS_CORE (Development package)
- Y_CAS_CONFIGURATION (Development package)

Package interfaces:

Naming package interfaces serves to declare an intention of
how specific objects propagated via the package interface
should be handled.

[Package name] [[Visibility] | [Access type]| [Consumer]]
- Y_CAS_SALES_ACTIVITY_PUBLIC

- Y_CAS_CONFIGURATION_READ

- Y_CAS_CONFIGURATION_WRITE

Elementary data types:

Data elements and domains specify the technical and
semantic characteristics of a data or reference type. As they
can be technically differentiated via their object directory
entry, identical names may be used.

[Single noun|compound noun]
Y_CAS_ACTION_IDENTIFIER (Domains)
Y_CAS_ACTION_IDENTIFIER (Data elements)

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

85

APPENDIX A

Structure types:

Multi-dimensional data types encompass one or more data
types as components. They are divided into single line and
multiple line structure types.

Structures:

Type

Structures historically share the same object directory entry with transparent tables. As such,

itis imperative to differentiate the two types using a technical prefix.
Example:

YS_CAS_ACTION
YS_CAS_MASTER_LINE

Transparent tables:

Generally, the prefix D should suffice for transparent tables. If further division is necessary,
due to the length restriction to 16 characters we recommend extending the prefix with the
technical table delivery class or T for tagging text tables.

Example:

YD_CAS_CONFIG

YDC_CAS_ACTIONS (Configuration table)
YDT_CAS_ACTIONS (Text table]

YDA _CAS_MASTER (Master and transaction data)
YDL_CAS_FILEINPT (Temporary data)

Views:
If the prefix Vis not sufficient for views, we recommend further division on the basis of the
view type.

Example:

YV_CAS_CONFIG

YVC_CAS_ACTIONS (Maintenance view)
YVH_CAS_ACTIONS (Help view])
YVD_CAS_MASTER (Database view])
YVP_CAS_MASTER (Projection view)

Table types:

If multiple table types have to be created for the same line type, we recommend including the
access type in the prefix and supplementing the semantic identifier with information on key
definition. Otherwise, the prefix T should suffice.

Example:
YT_CAS_ACTIONS

YTH_CAS_ACTIONS (Internal table with hash access)
YTS_CAS_ACTIONS_BY_ACTIVITY (Internal table sorted by the ACTIVITY field)

Core Data Services:

Newly created CDS views create three repository objects. The DDL source, a CDS view and a
CDS database view. To differentiate between CDS database views and normal database views,
we recommend following the SAP standard examples'® and marking the CDS database views
with the prefix SQL.

Example:
YSQL_CAS_MASTER (CDS database view)

A.1.3 CONTAINERS FOR SOURCE CODE OBJECTS

Executable applications

The application name should immediately elucidate what the
application does, which business object it focuses on and, if
necessary, which process operates the application (worklist,
wizard...). During naming we recommend adapting recognised
operating procedures from Floorplan Manager' or the Fiori
Design Guidelines.”’

Name formation [Single nounlcompound noun][Pattern]
Y_CAS_CUSTOMER_VISIT_PLANNER
Y_CAS_SALES_ACTIVITY_WORKLIST

Y_CAS_DATA_MIGRATION_WIZARD

Examples

105 SAP Help: Implement the CDS View as Data Model’
106 SAP Help: ‘Floorplans Concept’
107 Fiori Design Guidelines: ‘Floorplan Overview’

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

86

http://help.sap.com/search?library_search=true%23query%3DImplement%2Bthe%2BCDS%2BView%2Bas%2BData%2BModel&startindex=1&filter=scm_a_site(scm_v_Site10)&filter=scm_a_language(scm_v_lang01)&filter=scm_a_userurl(http%253A%252F%252Fhelp.sap.com%252Fsaphelp_nw75%252F%2A)&filter=scm_a_modDate(%2A)&timeScope=all
http://help.sap.com/search?library_search=true%23query%3DFloorplans%2BConcept&startindex=1&filter=scm_a_site(scm_v_Site10)&filter=scm_a_userurl(http%253A%252F%252Fhelp.sap.com%252Fsaphelp_nw75%252F%2A)&timeScope=all
https://experience.sap.com/fiori-design-web/floorplans/floorplan-overview/

<<
=
[=}
z
w
o
o
<<

Type

Name formation

Examples

Name formation

Where possible, includes for framework programs and
function group includes should no longer be used for reusable
modularisation techniques and should be replaced with ABAP
Objects for new developments. If their use is absolutely
necessary, modularisation should be aligned to the dynpro or
current business object.

[Framework program | Abbreviation] [Container type] [Dyn-
pro* | Counter]

Y _CAS_SALES_ACTIVITY_WORKLIST (Report)

Y CAS_SALES_ACTIVITY WL _TOP (Global declaration
section)

Y_CAS_SALES_ACTIVITY_WL_00100 (PBO dynpro 0100)

Y_CAS_SALES_ACTIVITY_WL_10100 (PAI | POH | POV dynpro
0100)

Y _CAS_SALES_ACTIVITY_WL_F01 (Form routines)
Y_CAS_SALES_ACTIVITY_WL_CO1 [Local classes)
Y_CAS_SALES_ACTIVITY_WL_T01 (Unit tests)

Function groups for table maintenance views

Generated function groups for table maintenance dialogue
should have the same name as the associated maintenance
view.

[Name of maintenance view]
YVC_CAS_ACTIONS (Maintenance view)

YVC_CAS_ACTIONS (Function group for table maintenance
view)

Enhancements

Enhancement spots serve as containers for enhancements of
objects that are specified in defined places with BAdI
definitions. Configuration can contain specific enhancement
implementations with diverse BAdl implementations, filters

etc.

Name formation

ABAP Objects

[Name of the object to be enhanced] [[Filter information |
| [Variants]]

Y_CAS_SALES_ACTIVITY_WORKLIST (Enhancement spot)

Y_CAS_SAWL_DEFAULT_EXTENSION
(Enhancement implementation)

/ABCDEF/CAS_SAWL_EXTENSION
(Enhancement implementation)

/ZYXWVU/CAS_SAWL_EXTENSION
(Enhancement implementation)

Y _CAS_SAWL_ADD_VALIDATION
(BAdI definition)

Y_CAS_SAWL_DEFAULT_VALIDATION
(BAdI implementation)

/ABCDEF/CAS_SAWL_DV_D0100
(BAdI implementation)

/ZYXWVU/CAS_SAWL_DV_D0200
(BAdI implementation)

We recommend following SAP guidelines for naming ABAP object components.'%®
Exceptions are the 'recommendation’ type guidelines and local conventions within
methods for parameters. For parameters, observe the recommendations in Appendix
A.2.3 Signatures. Instead of the prefix recommendation for e.g. constants and local
classes, it is better to use semantically appropriate and easily readable identifiers.

108 SAP Help: ‘Naming Conventions in ABAP Objects’

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

87

https://help.sap.com/viewer/bd833c8355f34e96a6e83096b38bf192/7.52.0/en-US/92c2b084bc1d11d2958700a0c94260a5.html

APPENDIX A

Example:

Local class in the local types context of a global class
CLASS sales_activity_constants DEFINITION
CREATE PRIVATE ABSTRACT FINAL.
PUBLIC SECTION.
CONSTANTS:
BEGIN OF partner_function,
key_account_manager TYPE tpar-parvw VALUE ’KA®,

END OF partner_function.
ENDCLASS.

A.2 NAMING CONVENTIONS FOR ABAP SOURCE CODE

Comprehension of naming conventions for source code is enhanced by using a prefix
for particularly important type information. Otherwise, the focus is on clear and
understandable naming (see Section 2.3).

A.2.1 CLASSIC USER DIALOGUES (SELECTION SCREENS/DYNPROS)

Due to the restriction in the length of components in classic user dialogue, we recom-
mend using the following prefixes:

Type ‘ Prefix

Parameters p_
Select options s

Table dialogue structures for dynpro binding none

A.2.2 VISIBILITY

Unintentional obscuring of local declarations can be avoided by defining prefixes for
signatures and global variables/types. The introduction of further prefix conventions is
not necessary from a technical perspective.

Type | Prefix

Global data objects g_

Exception:

For local declarations within methods, the prefix convention |_ can be used in the
following circumstances:

. The local declaration obscures a static class attribute.
° The method has to access the static class attribute.
o The class name is extremely long.

o Access via the component selector (=>) results in poor readability.

A.2.3 SIGNATURES

We recommend standardising use of signatures within the various procedure types
(subroutines/function modules/methods) and applying the following prefixes.

Type ‘ Prafix

Importing/using/tables i

Exporting/tables e_
Changing/tables c_
Returning r

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

APPENDIX A

A.3 FURTHER INFORMATION ON NAMING CONVENTIONS

For fans and advocates of a more comprehensive naming convention, for reasons of
consistency we refer you to the appended de-facto standard for comprehensive naming
conventions from the SCN community:
http://scn.sap.com/people/uwe.schieferstein/blog/2009/08/30/nomen-est-omen--
abap-naming-conventions

Another somewhat reduced version is available here:
http://scn.sap.com/community/abap/blog/2016/02/05/fanning-the-flames-prefixing-
variable attribute-names

Naturally we would not want to deprive you of the commensurate countergroup on this
subject:
http://scn.sap.com/community/abap/blog/2013/05/23/abap-code-naming-conven-
tions--a-rant

http://scn.sap.com/community/abap/blog/2015/09/22/hungarian-beginners-
course--a-polemic-scripture-against-hungarian-notation

Highly recommended are the comment passages associated with the above blogs. Take
the opportunity to consider things from the perspective of the respective faction and
familiarise yourself with the commensurate positive and negative aspects.

Ultimately, you need to establish the conventions that offer you, your internal team and
where applicable your external team, the greatest benefits in relation to productivity,
desired quality and lifecycle costs. We highly recommend focusing on an existing
standard and avoiding reinventing the wheel. This increases the chance that new
employees will already be familiar with the standard and hence are able to generate
added value for the company without the need for a long induction period.

To conclude we refer you to the official ABAP programming guidelines that served as
orientation for defining the naming conventions listed here:
http://help.sap.com/abapdocu 750/de/abennaming guidl.htm

A.4 MISCELLANEOUS/LESSONS LEARNED

A.4.1 CUSTOMER NAMESPACES

Where multiple system landscapes are employed between which developments are
transported back and forth, incorporation of the (hopefully transparent) system ID in
the prefix namespace is recommended. This will avoid any potential naming conflicts
between the respective systems.

Examples of system ID = D01:

e YDOT*

e /ZYXDO1/*

A.4.2 AVOID SUPERFLUOUS IDENTIFIER INFORMATION
Avoid oversized conventions for organisational components or fast-moving information
in short object names. Instead use Meta information that can, for example, be defined

using the Classification Toolset.?

Otherwise, cryptic identifiers are created that are difficult and costly to interpret as
this requires extended analysis of the conventions.

Examples:
o Name: /NAME/CL_T1_ERP_BC_SYS_DPC_607

o Meaning: data provider class that provides system information in corporate
template T1 on the basis of ECC 6 EHP 7.

Examples of Meta information to avoid in object names:
e [RICEF-ID]/[Change RequestID]/ [TicketID]
e [Corporate template]/ [System type]/ [Version]

. [Release status 1*

109 SAP Help Search ‘Classification Toolset’

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

89

http://scn.sap.com/people/uwe.schieferstein/blog/2009/08/30/nomen-est-omen--abap-naming-conventions
http://scn.sap.com/people/uwe.schieferstein/blog/2009/08/30/nomen-est-omen--abap-naming-conventions
http://scn.sap.com/community/abap/blog/2016/02/05/fanning-the-flames-prefixing-variableattribute-names
http://scn.sap.com/community/abap/blog/2016/02/05/fanning-the-flames-prefixing-variableattribute-names
http://scn.sap.com/community/abap/blog/2013/05/23/abap-code-naming-conventions--a-rant
http://scn.sap.com/community/abap/blog/2013/05/23/abap-code-naming-conventions--a-rant
http://scn.sap.com/community/abap/blog/2015/09/22/hungarian-beginners-course--a-polemic-scripture-against-hungarian-notation
http://scn.sap.com/community/abap/blog/2015/09/22/hungarian-beginners-course--a-polemic-scripture-against-hungarian-notation
http://help.sap.com/abapdocu_750/de/abennaming_guidl.htm
https://help.sap.com/search#query%3DClassification%2BToolset%26startindex%3D1%26filter%3Dscm_a_site(scm_v_Site10)%26filter%3Dscm_a_language(scm_v_lang01)%26filter%3Dscm_a_modDate(%2A)%26timeScope%3Dall

<<
=
[=}
z
w
o
o
<<

The use of release status details only makes sense for product development that is
actually developed for a range of releases and differs in terms of ABAP syntax or data
model. Such utilisation should be the exception rather than the rule.

A5 FORMS

Adobe Interactive Form Interfaces should stand out from
standard forms through the addition of a suffix.

Type

[Form name][Interface abbreviation]

Y_CAS_SALES_ACTIVITY_IF

Name formation

A.6 PROTECTION OF NAMING CONVENTIONS IN ABAP WORKBENCH

Naming conventions for repository objects can be managed using on-board means in
the Change and Transport System (CTS). CTS mechanisms provide so-called prefix
conventions to facilitate definition. Configuration of prefix conventions is implemented
using the table maintenance views V_TRESN and CTSRESNAME for reserved customer
namespaces. These views enable the specification of naming conventions for reposito-
ry objects per package."?

Maintenance of individual object types per package is extremely time-consuming and
involves a high level of change management. Generic maintenance for all objects of a
single package only works for reserved customer namespaces and is therefore not
relevant for all customers. An additional shortcoming is that the conventions do not
allow the overlapping of prefixes for various packages and the elements they contain.
For example it is not possible to apply prefix /ZYX/123 for the package /ZYX/SOME_
PACKAGE and at the same time the prefix /ZYX/1234 for the package /ZYX/SOME_
OTHER_PACKAGE, as the second prefix is a subset of the first. There is no guarantee
that all elements in a package should begin with the defined prefix, as objects without a
defined V_TRESN prefix can be allocated to the package without problem.

An innovation for contemporary package hierarchies was provided by SAP Note
2297645 shortly before the editorial deadline and is encompassed within the latest
SAP_BASIS 700 component service pack available since May 2016. Further details are
available in the SCN blog."" Although this innovation ensures that elements with the
defined prefix may only be stored in a package within the package hierarchy, it still
retains the aforementioned weaknesses.

B

Due to the restricted functionality, we recommend that
the table maintenance views V_TRESN and CTSRESNAME
should only be used after careful consideration and pref-
erably not at all.

|

110 Cf Definition of Naming Conventions [SAP Library - Software logistics)]

111 SCN blog: ‘News about ABAP Package Concept: Naming Conventions for Package Hierarchies’

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

https://help.sap.com/search?library_search=true%23query%3DDefinition%2Bvon%2BNamenskonventionen&startindex=1&filter=scm_a_userurl(http%253A%252F%252Fhelp.sap.com%252Fsaphelp_erp60_sp%252F%2A)&filter=scm_a_solutionSuite(scm_v_ssuite2)&timeScope=all
https://launchpad.support.sap.com/%23/notes/2297645
https://launchpad.support.sap.com/%23/notes/2297645
http://scn.sap.com/community/abap/blog/2016/05/03/news-about-abap-package-concept-naming-conventions-for-package-hierarchies

APPENDIX B

APPENDIX B: FURTHER EXAMPLES
B.1 ADDITIONAL ABAP KEYWORD DOCUMENTATION

The individual expansion options for ABAP keyword documentation are not an officially
supported feature of the current version. At present, only limited information is
available relating to expansion of the program guidelines. The following information is
therefore used solely at the user’s own risk:

Tools for maintenance of transaction ABAPDOCU are provided in the package SABAP-
DOCU. This contains the program ABAP_DOCU_TREE_MAINTAIN, which provides help
in relation to adding and editing the individual items in the navigation tree. Upon saving
the navigation tree the program runs the function module of the same name ABAP_
DOCU_TREE_MAINTAIN; within its local class TREE_MAINTAIN this starts the method
EDIT_STORE_TO_DATABASE, which initiates a comparison check via a constant with a
central SAP documentation system.

» (3 TREE_MAINTAIN » © EDIT_STORE_TO_DATABASE

--- check if SAP system

IF cl_abap docu_system=»id <« cl abap_docu_system=>sap.
MESSAGE text-nos TYPE '5" DISPLAY LIKE "W'.
RETURN.

EMDIF.

At the end of the method, storage of the modified navigation tree is delegated in a
transport request to the method UTIL_TRANSPORT_TREE, which initiates renewed
validation of the underlying SAP system.

» (O TREE_MAINTAIN » @& UTIL_TRANSPORT_TREE

IF cl_abap_docu_system=>id < cl_abap_ docu_system=>home.
MESSAGE text-tos TYPE 'S’ DISPLAY LIKE "W'.
RETURN.

EMDIF.

After working around the both checks, the changed navigation tree can be saved and
the changes transported to other systems.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT -91-

(%)
(&
=
(=]
=z
-
<
o
(8]
-

LEGAL NOTICE

NOTE:

Attention is expressly drawn to the fact that this document cannot anticipate and cover
all the regulatory requirements of all DSAG members in all the various business
scenarios. To this extent, the subjects and suggestions addressed in these guidelines
naturally remain incomplete. DSAG and the contributing authors accept no responsibility
in relation to the completeness and success-related suitability of these suggestions.
All considerations, approaches and methods relating to conduct vis-a-vis SAP remain
the individual responsibility of each DSAG member. Specifically, these guidelines can
only provide general indications on contractual issues and do not in any way substitute
individual legal advice in relation to the handling and structure of contracts by IT legal
experts.

This publication is protected by copyright.
Unless otherwise indicated, all rights are owned by:

Deutschsprachige SAP® Anwendergruppe e.V.
Altrottstrasse 34 a

69190 Walldorf | Germany
Telephone +49 6227 35809-58

Fax +49 6227 35809-59

Emailinfo@dsag.de

www.dsag.de

All unauthorised use is prohibited. In particular, this applies with regard to copying,
processing, dissemination, translation or use in electronic systems/digital media.

FURTHER INFORMATION IS AVAILABLE FROM:
Working group on development, www.dsag.de/ak-development

© Copyright 2016 DSAG e.V.

DSAG RECOMMENDATIONS - BEST PRACTICE GUIDELINES FOR DEVELOPMENT

92

mailto:info%40dsag.de?subject=
http://www.dsag.de
http://www.dsag.de/ak-development

	1	INTRODUCTION
	1.1	MOTIVATION & YOUR COOPERATION
	1.2	POSITIONING
	1.3	AMMENDMENTS IN THE 2ND EDITION

	2	PROGRAMMING GUIDELINES
	2.1	NAMING CONVENTIONS
	2.2	NAMESPACE
	2.3	READABILITY AND MODULARISATION
	2.4	SEPARATION OF PRESENTATION AND APPLICATION LOGIC
	2.5	INTERNATIONALISATION
	2.6	DYNAMIC PROGRAMMING AND AUDITABILITY
	2.7	NEW LANGUAGE ELEMENTS
	2.8	OBSOLETE STATEMENTS
	2.9	AUTOMATIC CHECKING OF DEVELOPMENT OBJECTS
	2.10	HARD CODING, MAGIC NUMBERS
	2.11	AUTHORISATION CHECKS IN SOURCE CODE
	2.12	PROGRAMMING MODEL: OBJECT-ORIENTED V PROCEDURAL
	2.13	DEVELOPMENT LANGUAGE

	3 PERFORMANCE
	3.1	THE PRINCIPLE OF AVOIDANCE
	3.2	PERFORMANCE OPTIMISATION ONLY IN THE APPROPRIATE AREAS
	3.3	USE EXISTING TOOLS
	3.4.1	DATA MODEL
	3.4.2	DATABASE ACCESS
	3.4.3	ABAP CORE DATA SERVICE (CDS) VIEWS

	3.5	INTERNAL TABLES AND REFERENCES
	3.5.1	FIELD SYMBOLS
	3.5.2	PASSING PARAMETERS

	3.6 CODE PUSH DOWN

	4	ROBUSTNESS AND ACCURACY
	4.1	ERROR HANDLING
	4.1.1	SY(ST)-SUBRC CHECKS
	4.1.2	MESSAGE STATEMENT
	4.1.3	CLASS-BASED EXCEPTIONS
	4.1.4	EXCEPTIONS THAT CANNOT BE HANDLED

	4.2	CORRECT IMPLEMENTATION OF DATABASE CHANGESgen
	4.2.1	LOCK OBJECTS
	4.2.2	DATABASE ACCESS FRAMEWORKS
	4.2.3	UPDATE CONCEPT

	4.3	LOGGING

	5	ABAP SECURITY AND COMPLIANCE
	5.1	SECURITY ISSUES RELEVANT TO TESTING IN SAP STANDARD
	5.1.1	AUTHORISATION CHECKS
	5.1.2	AUDITABILITY
	5.1.3	DATA PRIVACY
	5.1.4	INJECTION VULNERABILITIES
	5.1.5	STANDARD PROTECTION

	5.2	SECURITY RECOMMENDATIONS
	5.2.1	SEVEN UNIVERSAL RULES FOR SECURE ABAP PROGRAMMING
	5.2.2	THE MOST CRITICAL AND FREQUENT RISKS IN ABAP

	5. 3 ABAP COMPLIANCE PROBLEMS
	5.4	TESTING TOOLS

	6	DOCUMENTATION
	6.1	DOCUMENTATION INDEPENDENT OF DEVELOPMENT OBJECTS
	6.2	DOCUMENTATION OF DEVELOPMENT OBJECTS
	6.3 DOCUMENTATION IN SOURCE CODE
	6.3.1	DOCUMENTATION LANGUAGE
	6.3.2	CHANGE DOCUMENTATION
	6.3.3	PROGRAM HEADER
	6.3.4 SOURCE CODE COMMENTS

	7	FEASIBILITY AND ENFORCEABILITY
	7.1	FEASIBILITY
	7.1.1	MOTIVATION FOR A PROCESS
	7.1.2	PROCESS DESIGN AND MAINTENANCE

	7.2	ENFORCEABILITY
	7.2.1	MANUAL TESTING
	7.2.2	AUTOMATIC TESTING

	7.3	pracTICAL EXPERIENCE AND TIPS
	7.3.1	SOURCE CODE QUALITY ASSURANCE
	7.3.2	TIME AND BUDGET QUALITY ASSURANCE (QA)
	7.3.3	PROBLEMS
	7.3.4	DECISION MAKING REGARDING MODIFICATIONS
	7.3.5	PRACTICAL FIELD REPORT: COMGROUP GMBH

	8 INFRASTRUCTURE AND LIFECYCLE MANAGEMENT
	8.1	INFRASTRUCTURE
	8.1.1	CLASSIS THREE-SYSTEM LANDSCAPE
	8.1.1.1 DEVELOPMENT
	8.1.1.2 QUALITY ASSURANCE
	8.1.1.3 PRODUCTION

	8.1.2	FIVE- AND SIX-SYSTEM LANDSCAPES
	8.1.2.1 DEVELOPMENT
	8.1.2.2 TEST
	8.1.2.3 QUALITY ASSURANCE
	8.1.2.4 MAINTENANCE
	8.1.2.5 CONSOLIDATION
	8.1.2.6 PRODUCTION
	8.1.2.7 SCHEMATIC ILLUSTRATION OF SIX-SYSTEM LANDSCAPE

	8.1.3 SANDBOX
	8.1.4	TRANSPORT SYSTEM
	8.1.5	SAFEGUARDING CONSISTENCY OF NEW DEVELOPMENTS AND EXTENSIONS
	8.1.6	ROLL BACK OF NEW DEVELOPMENTS

	8.2	CHANGE MANAGEMENT
	8.3	SOFTWARE MAINTAINABILITY
	8.4	ADAPTATION OF SAP FUNCTIONALITY
	8.5	AUDITABILITY OF APPLICATIONS
	8.5.1	TEST PROCESS BASICS FOR THE CREATION OF SOFTWARE PRODUCTS
	8.5.2	TEST AUTOMATION

	9	EcLIPSE DEVELOPMENT ENVIRONMENT
	9.1	REQUIREMENTS AND INSTALLATION
	9.2	NECESSITY
	9.3	ADVANTAGES
	9.4	CONSIDERATIONS
	9.5	PROBLEMS AND SUPPORT WITH CHANGEOVER
	9.6	CONCLUSION
	9.7	ADDITIONAL SOURCES

	10	USER INTERFACE (UI)
	10.1	UI TECHNOLOGIES IN PRACTICE
	10.2	SAPUI5
	10.2.1	REQUIREMENTS
	10.2.2	DEVELOPMENT
	10.2.2.1 DISCOVER
	10.2.2.2 DESIGN
	10.2.2.3 DELIVER

	10.2.3	GENERAL RECOMMENDATIONS
	10.2.4	ADDITIONAL SOURCES

	10.3	SAP GATEWAY
	10.3.1	USING SAP GATEWAY
	10.3.2	DEVELOPING WITH SAP GATEWAY
	10.3.3	GENERAL RECOMMENDATIONS
	10.3.4	ADDITIONAL SOURCES

	11	THE AUTHORS
	APPENDIX A: NAMING CONVENTIONS
	A.1	REPOSITORY OBJECT NAMING CONVENTIONS
	A.1.1	PACKAGE HIERARCHY
	A.1.2	DICTIONARY OBJECTS
	A.1.3	CONTAINERS FOR SOURCE TEXT OBJECTS

	A.2	NAMING CONVENTIONS FOR ABAP SOURCE TEXT
	A.2.1	CLASSIC USER DIALOGUES (SELECTION SCREENS/DYNPROS)
	A.2.2	VISIBILITY
	A.2.3	SIGNATURES

	A.3	FURTHER INFORMATION ON NAMING CONVENTIONS
	A.4	MISCELLANEOUS/LESSONS LEARNED
	A.4.1	CUSTOMER NAMESPACES
	A.4.2	AVOID SUPERFLUOUS IDENTIFIER INFORMATION

	A.5	FORMS
	A.6	PROTECTION OF NAMING CONVENTIONS IN ABAP WORKBENCH

	APPENDIX B: FURTHER EXAMPLES
	B.1	ADDITIONAL ABAP KEYWORD DOCUMENTATION

	LEGAL NOTICE
	Figure 1: ICS risks resulting from insecure ABAP source code
	Figure 2: Schematic illustration of six-system landscape
	Figure 3: Change control form (CC)
	Figure 4: W-model with test levels 61
	Figure 5: SAP etWeaver 7.5 PAM browser support
	Figure 6: Phases of design thinking
	Figure 7: Supported test phases in SAPUI5
	Figure 8: SAP Gateway deployment options 91

